5 research outputs found

    A Pilot Study to Assess Markers of Renal Damage in the Rodent Kidney After Exposure to 7 MHz Ultrasound Pulse Sequences Designed to Cause Microbubble Translation and Disruption

    Get PDF
    Acoustic radiation force has been proposed as a mechanism to enhance microbubble concentration for therapeutic and molecular imaging applications. It is hypothesized that once microbubbles are localized, bursting them with acoustic pressure could result in local drug delivery. It is known that low-frequency, high-amplitude acoustic energy combined with cavitation nuclei can result in bioeffects. However, little is known about the bioeffects potential of acoustic parameters involved in radiation-force and microbubble destruction pulse sequences applied at higher frequencies. In this pilot study, rat kidneys are exposed to high-duty cycle, low-amplitude pulse sequences known to cause substantial bubble translation due to radiation force, as well as high-amplitude short pulse sequences known to cause microbubble destruction. Both studies are performed at 7 MHz on a clinical ultrasound system, and implemented in 3-D for entire kidney exposure. Analysis of biomarkers of renal injury and renal histopathology indicate that there was no significant renal damage due to these ultrasound parameters in conjunction with microbubbles within the study group

    Validation of Dynamic Contrast-Enhanced Ultrasound in Rodent Kidneys as an Absolute Quantitative Method for Measuring Blood Perfusion

    Get PDF
    Contrast-enhanced ultrasound (CEUS) has demonstrated utility in the monitoring of blood flow in tissues, organs, and tumors. However, current CEUS methods typically provide only relative image-derived measurements, rather than quantitative values of blood flow in milliliters/minute per gram of tissue. In this study, CEUS derived parameters of blood flow are compared to absolute measurements of blood flow in rodent kidneys. Additionally, the effect of contrast agent infusion rate and transducer orientation on image-derived perfusion measurements are assessed. Both wash-in curve and time-to-refill algorithms are examined. Data illustrate that for all conditions, image-derived flow measurements were well-correlated with transit-time flow probe measurements (R > 0.9). However, we report differences in the sensitivity to flow across different transducer orientations as well as the contrast analysis algorithm utilized. Results also indicate that there exists a range of contrast agent flow rates for which image-derived estimates are consistent

    The Performance of Flash Replenishment Contrast-Enhanced Ultrasound for the Qualitative Assessment of Kidney Lesions in Patients with Chronic Kidney Disease

    Get PDF
    We investigated the accuracy of CEUS for characterizing cystic and solid kidney lesions in patients with chronic kidney disease (CKD). Cystic lesions are assessed using Bosniak criteria for computed tomography (CT) and magnetic resonance imaging (MRI); however, in patients with moderate to severe kidney disease, CT and MRI contrast agents may be contraindicated. Contrast-enhanced ultrasound (CEUS) is a safe alternative for characterizing these lesions, but data on its performance among CKD patients are limited. We performed flash replenishment CEUS in 60 CKD patients (73 lesions). Final analysis included 53 patients (63 lesions). Four readers, blinded to true diagnosis, interpreted each lesion. Reader evaluations were compared to true lesion classifications. Performance metrics were calculated to assess malignant and benign diagnoses. Reader agreement was evaluated using Bowker’s symmetry test. Combined reader sensitivity, specificity, positive predictive value (PPV), and negative predictive value (NPV) for diagnosing malignant lesions were 71%, 75%, 45%, and 90%, respectively. Sensitivity (81%) and specificity (83%) were highest in CKD IV/V patients when grouped by CKD stage. Combined reader sensitivity, specificity, PPV, and NPV for diagnosing benign lesions were 70%, 86%, 91%, and 61%, respectively. Again, in CKD IV/V patients, sensitivity (81%), specificity (95%), and PPV (98%) were highest. Inter-reader diagnostic agreement varied from 72% to 90%. In CKD patients, CEUS is a potential low-risk option for screening kidney lesions. CEUS may be particularly beneficial for CKD IV/V patients, where kidney preservation techniques are highly relevant
    corecore