224 research outputs found
Microphase separation in thin block copolymer films: a weak segregation mean-field approach
In this paper we consider thin films of AB block copolymer melts confined
between two parallel plates. The plates are identical and may have a preference
for one of the monomer types over the other. The system is characterized by
four parameters: the Flory-Huggins chi-parameter, the fraction f of A-monomers
in the block copolymer molecules, the film thickness d, and a parameter h
quantifying the preference of the plates for the monomers of type A. In certain
regions of parameter space, the film will be microphase separated. Various
structures have been observed experimentally, each of them characterized by a
certain symmetry, orientation, and periodicity. We study the system
theoretically using the weak segregation approximation to mean field theory. We
restrict our analysis to the region of the parameter space where the film
thickness d is close to a small multiple of the natural periodicity. We will
present our results in the form of phase diagrams in which the absolute value
of the deviation of the film thickness from a multiple of the bulk periodicity
is placed along the horizontal axis, and the chi-parameter is placed along the
vertical axis; both axes are rescaled with a factor which depends on the
A-monomer fraction f. We present a series of such phase diagrams for increasing
values of the surface affinity for the A-monomers. We find that if the film
thickness is almost commensurate with the bulk periodicity, parallel
orientations of the structures are favoured over perpendicular orientations. We
also predict that on increasing the surface affinity, the region of stability
of the bcc phase shrinks.Comment: 35 pages, 20 figure
Conformational dynamics and role of the acidic pocket in ASIC pH-dependent gating.
Acid-sensing ion channels (ASICs) are proton-activated Na <sup>+</sup> channels expressed in the nervous system, where they are involved in learning, fear behaviors, neurodegeneration, and pain sensation. In this work, we study the role in pH sensing of two regions of the ectodomain enriched in acidic residues: the acidic pocket, which faces the outside of the protein and is the binding site of several animal toxins, and the palm, a central channel domain. Using voltage clamp fluorometry, we find that the acidic pocket undergoes conformational changes during both activation and desensitization. Concurrently, we find that, although proton sensing in the acidic pocket is not required for channel function, it does contribute to both activation and desensitization. Furthermore, protonation-mimicking mutations of acidic residues in the palm induce a dramatic acceleration of desensitization followed by the appearance of a sustained current. In summary, this work describes the roles of potential pH sensors in two extracellular domains, and it proposes a model of acidification-induced conformational changes occurring in the acidic pocket of ASIC1a
Long Range Bond-Bond Correlations in Dense Polymer Solutions
The scaling of the bond-bond correlation function along linear polymer
chains is investigated with respect to the curvilinear distance, , along the
flexible chain and the monomer density, , via Monte Carlo and molecular
dynamics simulations. % Surprisingly, the correlations in dense three
dimensional solutions are found to decay with a power law with and the exponential behavior commonly assumed is
clearly ruled out for long chains. % In semidilute solutions, the density
dependent scaling of with
( being Flory's exponent) is set by the
number of monomers contained in an excluded volume blob of size
. % Our computational findings compare well with simple scaling arguments
and perturbation calculation. The power-law behavior is due to
self-interactions of chains on distances caused by the connectivity
of chains and the incompressibility of the melt. %Comment: 4 pages, 4 figure
Discrete structure of ultrathin dielectric films and their surface optical properties
The boundary problem of linear classical optics about the interaction of
electromagnetic radiation with a thin dielectric film has been solved under
explicit consideration of its discrete structure. The main attention has been
paid to the investigation of the near-zone optical response of dielectrics. The
laws of reflection and refraction for discrete structures in the case of a
regular atomic distribution are studied and the structure of evanescent
harmonics induced by an external plane wave near the surface is investigated in
details. It is shown by means of analytical and numerical calculations that due
to the existence of the evanescent harmonics the laws of reflection and
refraction at the distances from the surface less than two interatomic
distances are principally different from the Fresnel laws. From the practical
point of view the results of this work might be useful for the near-field
optical microscopy of ultrahigh resolution.Comment: 25 pages, 16 figures, LaTeX2.09, to be published in Phys.Rev.
Why polymer chains in a melt are not random walks
A cornerstone of modern polymer physics is the `Flory ideality hypothesis'
which states that a chain in a polymer melt adopts `ideal' random-walk-like
conformations. Here we revisit theoretically and numerically this pivotal
assumption and demonstrate that there are noticeable deviations from ideality.
The deviations come from the interplay of chain connectivity and the
incompressibility of the melt, leading to an effective repulsion between chain
segments of all sizes . The amplitude of this repulsion increases with
decreasing where chain segments become more and more swollen. We illustrate
this swelling by an analysis of the form factor , i.e. the scattered
intensity at wavevector resulting from intramolecular interferences of a
chain. A `Kratky plot' of {\em vs.} does not exhibit the plateau
for intermediate wavevectors characteristic of ideal chains. One rather finds a
conspicuous depression of the plateau, ,
which increases with and only depends on the monomer density .Comment: 4 pages, 4 figures, EPL, accepted January 200
Single chain structure in thin polymer films: Corrections to Flory's and Silberberg's hypotheses
Conformational properties of polymer melts confined between two hard
structureless walls are investigated by Monte Carlo simulation of the
bond-fluctuation model. Parallel and perpendicular components of chain
extension, bond-bond correlation function and structure factor are computed and
compared with recent theoretical approaches attempting to go beyond Flory's and
Silberberg's hypotheses. We demonstrate that for ultrathin films where the
thickness, , is smaller than the excluded volume screening length (blob
size), , the chain size parallel to the walls diverges logarithmically,
with . The corresponding bond-bond
correlation function decreases like a power law, with
being the curvilinear distance between bonds and . % Upon increasing
the film thickness, , we find -- in contrast to Flory's hypothesis -- the
bulk exponent and, more importantly, an {\em decreasing}
that gives direct evidence for an {\em enhanced} self-interaction of chain
segments reflected at the walls. Systematic deviations from the Kratky plateau
as a function of are found for the single chain form factor parallel to the
walls in agreement with the {\em non-monotonous} behaviour predicted by theory.
This structure in the Kratky plateau might give rise to an erroneous estimation
of the chain extension from scattering experiments. For large the
deviations are linear with the wave vector, , but are very weak. In
contrast, for ultrathin films, , very strong corrections are found
(albeit logarithmic in ) suggesting a possible experimental verification of
our results.Comment: 16 pages, 7 figures. Dedicated to L. Sch\"afer on the occasion of his
60th birthda
Toll-like receptor and IL-12 signaling control susceptibility to contact hypersensitivity.
Allergic contact hypersensitivity (CHS) is a T cell-mediated inflammatory skin disease. Interleukin (IL)-12 is considered to be important in the generation of the allergen-specific T cell response. Loss of IL-12 function in IL-12Rbeta2-deficient mice, however, did not ameliorate the allergic immune response, suggesting alternate IL-12-independent pathways in the induction of CHS. Because exposure to contact allergens always takes place in the presence of microbial skin flora, we investigated the potential role of Toll-like receptors (TLRs) in the induction of CHS. Using mice deficient in TLR4, the receptor for bacterial lipopolysaccharide (LPS), IL-12 receptor (R) beta2, or both, we show that the concomitant absence of TLR4 and IL-12Rbeta2, but not the absence of TLR4 or IL-12Rbeta2 alone, prevented DC-mediated sensitization, generation of effector T cells, and the subsequent CHS response to 2,4,6-trinitro-1-chlorobenzene (TNCB), oxazolone, and fluorescein isothiocyanate. Introduction of the TLR4 transgene into the TLR4/IL-12Rbeta2 mutant restored the CHS inducibility, showing a requirement for TLR4 in IL-12-independent CHS induction. Furthermore, the concomitant absence of TLR2 and TLR4 prevented the induction of CHS to TNCB in IL-12-competent mice. Finally, CHS was inducible in germ-free wild-type and IL-12Rbeta2-deficient mice, but not in germ-free TLR4/IL-12Rbeta2 double deficient mice, suggesting that the necessary TLR activation may proceed via endogenous ligands
Non-Equilibrium in Adsorbed Polymer Layers
High molecular weight polymer solutions have a powerful tendency to deposit
adsorbed layers when exposed to even mildly attractive surfaces. The
equilibrium properties of these dense interfacial layers have been extensively
studied theoretically. A large body of experimental evidence, however,
indicates that non-equilibrium effects are dominant whenever monomer-surface
sticking energies are somewhat larger than kT, a common case. Polymer
relaxation kinetics within the layer are then severely retarded, leading to
non-equilibrium layers whose structure and dynamics depend on adsorption
kinetics and layer ageing. Here we review experimental and theoretical work
exploring these non-equilibrium effects, with emphasis on recent developments.
The discussion addresses the structure and dynamics in non-equilibrium polymer
layers adsorbed from dilute polymer solutions and from polymer melts and more
concentrated solutions. Two distinct classes of behaviour arise, depending on
whether physisorption or chemisorption is involved. A given adsorbed chain
belonging to the layer has a certain fraction of its monomers bound to the
surface, f, and the remainder belonging to loops making bulk excursions. A
natural classification scheme for layers adsorbed from solution is the
distribution of single chain f values, P(f), which may hold the key to
quantifying the degree of irreversibility in adsorbed polymer layers. Here we
calculate P(f) for equilibrium layers; we find its form is very different to
the theoretical P(f) for non-equilibrium layers which are predicted to have
infinitely many statistical classes of chain. Experimental measurements of P(f)
are compared to these theoretical predictions.Comment: 29 pages, Submitted to J. Phys.: Condens. Matte
Scale-free static and dynamical correlations in melts of monodisperse and Flory-distributed homopolymers: A review of recent bond-fluctuation model studies
It has been assumed until very recently that all long-range correlations are
screened in three-dimensional melts of linear homopolymers on distances beyond
the correlation length characterizing the decay of the density
fluctuations. Summarizing simulation results obtained by means of a variant of
the bond-fluctuation model with finite monomer excluded volume interactions and
topology violating local and global Monte Carlo moves, we show that due to an
interplay of the chain connectivity and the incompressibility constraint, both
static and dynamical correlations arise on distances . These
correlations are scale-free and, surprisingly, do not depend explicitly on the
compressibility of the solution. Both monodisperse and (essentially)
Flory-distributed equilibrium polymers are considered.Comment: 60 pages, 49 figure
- …