110 research outputs found

    Cytochrome P450 Inhibitors Reduce Creeping Bentgrass (Agrostis stolonifera) Tolerance to Topramezone

    Get PDF
    Creeping bentgrass (Agrostis stolonifera L.) is moderately tolerant to the p-hydroxyphenylpyruvate dioxygenase-inhibiting herbicide topramezone. However, the contribution of plant metabolism of topramezone to this tolerance is unknown. Experiments were conducted to determine if known cytochrome P450 monooxygenase inhibitors 1-aminobenzotriazole (ABT) and malathion alone or in combination with the herbicide safener cloquintocet-mexyl influence creeping bentgrass tolerance to topramezone. Creeping bentgrass in hydroponic culture was treated with ABT (70 μM), malathion (70 μm and 1000 g ha(-1)), or cloquintocet-mexyl (70 μM and 1000 g ha(-1)) prior to topramezone (8 g ha(-1)) application. Topramezone-induced injury to creeping bentgrass increased from 22% when applied alone to 79 and 41% when applied with malathion or ABT, respectively. Cloquintocet-mexyl (70 μM and 1000 g ha(-1)) reduced topramezone injury to 1% and increased creeping bentgrass biomass and PSII quantum yield. Cloquintocet-mexyl mitigated the synergistic effects of ABT more than those of malathion. The effects of malathion on topramezone injury were supported by creeping bentgrass biomass responses. Responses to ABT and malathion suggest that creeping bentgrass tolerance to topramezone is influenced by cytochrome P450-catalyzed metabolism. Future research should elucidate primary topramezone metabolites and determine the contribution of cytochrome P450 monooxygenases and glutathione S-transferases to metabolite formation in safened and non-safened creeping bentgrass

    Metabolomic markers reveal novel pathways of ageing and early development in human populations

    Get PDF
    BACKGROUND Human ageing is a complex, multifactorial process and early developmental factors affect health outcomes in old age. METHODS Metabolomic profiling on fasting blood was carried out in 6055 individuals from the UK. Stepwise regression was performed to identify a panel of independent metabolites which could be used as a surrogate for age. We also investigated the association with birthweight overall and within identical discordant twins and with genome-wide methylation levels. RESULTS We identified a panel of 22 metabolites which combined are strongly correlated with age (R(2) = 59%) and with age-related clinical traits independently of age. One particular metabolite, C-glycosyl tryptophan (C-glyTrp), correlated strongly with age (beta = 0.03, SE = 0.001, P = 7.0 × 10(-157)) and lung function (FEV1 beta = -0.04, SE = 0.008, P = 1.8 × 10(-8) adjusted for age and confounders) and was replicated in an independent population (n = 887). C-glyTrp was also associated with bone mineral density (beta = -0.01, SE = 0.002, P = 1.9 × 10(-6)) and birthweight (beta = -0.06, SE = 0.01, P = 2.5 × 10(-9)). The difference in C-glyTrp levels explained 9.4% of the variance in the difference in birthweight between monozygotic twins. An epigenome-wide association study in 172 individuals identified three CpG-sites, associated with levels of C-glyTrp (P < 2 × 10(-6)). We replicated one CpG site in the promoter of the WDR85 gene in an independent sample of 350 individuals (beta = -0.20, SE = 0.04, P = 2.9 × 10(-8)). WDR85 is a regulator of translation elongation factor 2, essential for protein synthesis in eukaryotes. CONCLUSIONS Our data illustrate how metabolomic profiling linked with epigenetic studies can identify some key molecular mechanisms potentially determined in early development that produce long-term physiological changes influencing human health and ageing

    Studies related to ammonia metabolism in mammalian tissues

    No full text
    The work reported in this thesis concerns the metabolism of ammonia in the liver and kidney of the rat. Glutamate dehydrogenase in the mitochondria of these tissues appears to be very close to equilibrium and thus ammonia is linked to a large number of other metabolites through the network of equilibrium enzymes in these tissues, These inter-relations and the factors influencing them in a number of different situations were studied. Chapter I contains a historical introduction to the metabolism of ammonia and a discussion of the difficulties inherent in a study of its metabolism. Rapid freezing of tissues together with an enzymatic method for the determination of ammonia provide the best methods for the study of its in vivo metabolism. A very brief account of current knowledge concerning equilibrium enzymes is presented and the criteria necessary for establishing that the reaction of a given enzyme is close to equilibrium are discussed. As an arbitrary standard, it is proposed that the in in vivo mass action ratio should differ from the apparent equilibrium constant by no more than a factor of three before it may be considered to be ‘close to equilibrium’. Continued in thesis ..
    • …
    corecore