1,371 research outputs found
Hematological Disorders and Pulmonary Hypertension
Pulmonary hypertension (PH), a serious disorder with a high morbidity and mortality rate, is known to occur in a number of unrelated systemic diseases. Several hematological disorders such as sickle cell disease, thalassemia and myeloproliferative diseases develop PH which worsens the prognosis. Associated oxidant injury and vascular inflammation cause endothelial damage and dysfunction. Pulmonary vascular endothelial damage/dysfunction is an early event in PH resulting in the loss of vascular reactivity, activation of proliferative and antiapoptotic pathways leading to vascular remodeling, elevated pulmonary artery pressure, right ventricular hypertrophy and premature death. Hemolysis observed in hematological disorders leads to free hemoglobin which rapidly scavenges nitric oxide (NO), limiting its bioavailability, and leading to endothelial dysfunction. In addition, hemolysis releases arginase into the circulation which converts L-arginine to ornithine, thus bypassing NO production. Furthermore, treatments for hematological disorders such as immunosuppressive therapy, splenectomy, bone marrow transplantation, and radiation have been shown to contribute to the development of PH. Recent studies have shown deregulated iron homeostasis in patients with cardiopulmonary diseases including pulmonary arterial hypertension (PAH). Several studies have reported low iron levels in patients with idiopathic PAH, and iron deficiency is an important risk factor. This article reviews PH associated with hematological disorders and its mechanism; and iron homeostasis and its relevance to PH
A Core Genome Approach That Enables Prospective and Dynamic Monitoring of Infectious Outbreaks
Whole-genome sequencing is increasingly adopted in clinical settings to identify pathogen transmissions, though largely as a retrospective tool. Prospective monitoring, in which samples are continuously added and compared to previous samples, can generate more actionable information. To enable prospective pathogen comparison, genomic relatedness metrics based on single-nucleotide differences must be consistent across time, efficient to compute and reliable for a large variety of samples. The choice of genomic regions to compare, i.e., the core genome, is critical to obtain a good metric. We propose a novel core genome method that selects conserved sequences in the reference genome by comparing its k-mer content to that of publicly available genome assemblies. The conserved-sequence genome is sample set-independent, which enables prospective pathogen monitoring. Based on clinical data sets of 3436 S. aureus, 1362 K. pneumoniae and 348 E. faecium samples, ROC curves demonstrate that the conserved-sequence genome disambiguates same-patient samples better than a core genome consisting of conserved genes. The conserved-sequence genome confirms outbreak samples with high sensitivity: in a set of 2335 S. aureus samples, it correctly identifies 44 out of 44 known outbreak samples, whereas the conserved-gene method confirms 38 known outbreak samples
Evolution and Mutations Predisposing to Daptomycin Resistance in Vancomycin-Resistant Enterococcus faecium ST736 Strains
We recently identified a novel vancomycin-resistant Enterococcus faecium (VREfm) clone ST736 with reduced daptomycin susceptibility. The objectives of this study were to assess the population dynamics of local VREfm strains and genetic alterations predisposing to daptomycin resistance in VREfm ST736 strains. Multilocus sequence typing and single nucleotide variant data were derived from whole-genome sequencing of 250 E. faecium isolates from 1994-1995 (n = 43), 2009-2012 (n = 115) and 2013 (n = 92). A remarkable change was noticed in the clonality and antimicrobial resistance profiles of E. faecium strains between 1994-1995 and 2013. VREfm sequence type 17 (ST17), the prototype strain of clade A1, was the dominant clone (76.7%) recognized in 1994-1995. By contrast, clone ST736 accounted for 46.7% of VREfm isolates, followed by ST18 (26.1%) and ST412 (20.7%) in 2013. Bayesian evolutionary analysis suggested that clone ST736 emerged between 1996 and 2009. Co-mutations (liaR.W73C and liaS.T120A) of the liaFSR system were identified in all ST736 isolates (n = 111, 100%) examined. Thirty-eight (34.2%) ST736 isolates exhibited daptomycin-resistant phenotype, of which 13 isolates had mutations in both the liaFSR and cardiolipin synthase (cls) genes and showed high level of resistance with a daptomycin MIC50 of 32 mug/mL. The emergence of ST736 strains with mutations predisposing to daptomycin resistance and subsequent clonal spread among inpatients contributed to the observed high occurrence of daptomycin resistance in VREfm at our institution. The expanding geographic distribution of ST736 strains in other states and countries raises concerns about its global dissemination
Oral ketamine vs placebo in patients with cancer-related neuropathic pain
Ketamine hydrochloride is used as an adjuvant treatment for cancer-related neuropathic pain, but evidence of its effectiveness is limited.1 Findings of a large trial investigating the use of ketamine for general cancer pain were negative, but the population studied did not specifically have neuropathic pain. A randomized trial of oral ketamine for cancer-related neuropathic pain has been called for, and the present trial addresses that need
Complete Genome Sequences of Four Toxigenic ;Clostridium difficile Clinical Isolates from Patients of the Lower Hudson Valley, New York, USA
Complete genome sequences of four toxigenic Clostridium difficile isolates from patients in the lower Hudson Valley, New York, USA, were achieved. These isolates represent four common sequence types (ST1, ST2, ST8, and ST42) belonging to two distinct phylogenetic clades. All isolates have a 4.0- to 4.2-Mb circular chromosome, and one carries a phage
- …