1,063 research outputs found
Experimental and Computational Analysis of Progressive Failure in Bolted Hybrid Composite Joints
Composite materials are strong, lightweight, and stiff making them desirable in aerospace applications. However, a practical issue arises with composites in that they behave unpredictably in bolted joints, where damage and cracks are often initiated. This research investigated a solution to correcting the problem with composite bolted joints. A novel hybrid composite material was developed, where thin stainless steel foils were placed between and in place of preimpregnated composite plies during the cure cycle to reinforce stress concentrations in bolted joints. This novel composite was compared to control samples experimentally in quasi-static monotonic loading in double shear configuration in 9-ply and 18-ply layups. It was also investigated in quasi-static loading in single shear configuration using 18-ply samples in both protruding head and countersunk head configurations. Progressive failure samples were compared to data to explain which phenomenon in the material caused certain features in experimental curves. The final goal of the experimental effort was to perform an initial cycle fatigue comparison between the novel hybrid and control materials. The parallel research effort explored creating finite element models that could correctly represent and predict the behavior of this hybrid system. This was the first effort employing numerical failure criterion alongside a rigorous experimentation across multiple configurations. Hybridizing the composite material increased yield by as much as 25% and increased ultimate load capacity as much as 42%. The finite element models employed Hashin failure criteria and proved the ability to predict the yield load capacity to within 6.5% error
A physically motivated and empirically calibrated method to measure effective temperature, metallicity, and Ti abundance of M dwarfs
The ability to perform detailed chemical analysis of Sun-like F-, G-, and
K-type stars is a powerful tool with many applications including studying the
chemical evolution of the Galaxy and constraining planet formation theories.
Unfortunately, complications in modeling cooler stellar atmospheres hinders
similar analysis of M-dwarf stars. Empirically-calibrated methods to measure M
dwarf metallicity from moderate-resolution spectra are currently limited to
measuring overall metallicity and rely on astrophysical abundance correlations
in stellar populations. We present a new, empirical calibration of synthetic M
dwarf spectra that can be used to infer effective temperature, Fe abundance,
and Ti abundance. We obtained high-resolution (R~25,000), Y-band (~1 micron)
spectra of 29 M dwarfs with NIRSPEC on Keck II. Using the PHOENIX stellar
atmosphere modeling code (version 15.5), we generated a grid of synthetic
spectra covering a range of temperatures, metallicities, and
alpha-enhancements. From our observed and synthetic spectra, we measured the
equivalent widths of multiple Fe I and Ti I lines and a temperature-sensitive
index based on the FeH bandhead. We used abundances measured from
widely-separated solar-type companions to empirically calibrate transformations
to the observed indices and equivalent widths that force agreement with the
models. Our calibration achieves precisions in Teff, [Fe/H], and [Ti/Fe] of 60
K, 0.1 dex, and 0.05 dex, respectively and is calibrated for 3200 K < Teff <
4100 K, -0.7 < [Fe/H] < +0.3, and -0.05 < [Ti/Fe] < +0.3. This work is a step
toward detailed chemical analysis of M dwarfs at a similar precision achieved
for FGK stars.Comment: accepted for publication in ApJ, all synthetic spectra available at
http://people.bu.edu/mveyette/phoenix
Stellar Parameters for HD 69830, a Nearby Star with Three Neptune Mass Planets and an Asteroid Belt
We used the CHARA Array to directly measure the angular diameter of HD 69830,
home to three Neptune mass planets and an asteroid belt. Our measurement of
0.674+/-0.014 milli-arcseconds for the limb-darkened angular diameter of this
star leads to a physical radius of R = 0.90580.0190 R\sun and
luminosity of L* = 0.622+/-0.014 Lsun when combined with a fit to the spectral
energy distribution of the star. Placing these observed values on an
Hertzsprung-Russel (HR) diagram along with stellar evolution isochrones
produces an age of 10.6+/-4 Gyr and mass of 0.8630.043 M\sun. We use
archival optical echelle spectra of HD 69830 along with an iterative spectral
fitting technique to measure the iron abundance ([Fe/H]=-0.04+/-0.03),
effective temperature (5385+/-44 K) and surface gravity (log g = 4.49+/-0.06).
We use these new values for the temperature and luminosity to calculate a more
precise age of 7.5+/-Gyr. Applying the values of stellar luminosity and radius
to recent models on the optimistic location of the habitable zone produces a
range of 0.61-1.44 AU; partially outside the orbit of the furthest known planet
(d) around HD 69830. Finally, we estimate the snow line at a distance of
1.95+/-0.19 AU, which is outside the orbit of all three planets and its
asteroid belt.Comment: 5 pages, 3 figures, accepted to Ap
Cancer invasion and anaerobic bacteria: New insights into mechanisms
There is growing evidence that altered microbiota abundance of a range of specific anaerobic bacteria are associated with cancer, including Peptoniphilus spp., Porphyromonas spp., Fusobacterium spp., Fenollaria spp., Prevotella spp., Sneathia spp., Veillonella spp., and Anaerococcus spp. linked to multiple cancer types. In this review we explore these pathogenic associations. The mechanisms by which bacteria are known or predicted to interact with human cells are reviewed and we present an overview of the interlinked mechanisms and hypotheses of how multiple intracellular anaerobic bacterial pathogens may act together to cause host cell and tissue microenvironment changes associated with carcinogenesis and cancer cell invasion. These include combined effects on changes in cell signalling, DNA damage, cellular metabolism and immune evasion. Strategies for early detection and eradication of anaerobic cancer associated bacterial pathogens that may prevent cancer progression are proposed
Planet Hunters. V. A Confirmed Jupiter-Size Planet in the Habitable Zone and 42 Planet Candidates from the Kepler Archive Data
We report the latest Planet Hunter results, including PH2 b, a Jupiter-size
(R_PL = 10.12 \pm 0.56 R_E) planet orbiting in the habitable zone of a
solar-type star. PH2 b was elevated from candidate status when a series of
false positive tests yielded a 99.9% confidence level that transit events
detected around the star KIC 12735740 had a planetary origin. Planet Hunter
volunteers have also discovered 42 new planet candidates in the Kepler public
archive data, of which 33 have at least three transits recorded. Most of these
transit candidates have orbital periods longer than 100 days and 20 are
potentially located in the habitable zones of their host stars. Nine candidates
were detected with only two transit events and the prospective periods are
longer than 400 days. The photometric models suggest that these objects have
radii that range between Neptune to Jupiter. These detections nearly double the
number of gas giant planet candidates orbiting at habitable zone distances. We
conducted spectroscopic observations for nine of the brighter targets to
improve the stellar parameters and we obtained adaptive optics imaging for four
of the stars to search for blended background or foreground stars that could
confuse our photometric modeling. We present an iterative analysis method to
derive the stellar and planet properties and uncertainties by combining the
available spectroscopic parameters, stellar evolution models, and transiting
light curve parameters, weighted by the measurement errors. Planet Hunters is a
citizen science project that crowd-sources the assessment of NASA Kepler light
curves. The discovery of these 43 planet candidates demonstrates the success of
citizen scientists at identifying planet candidates, even in longer period
orbits with only two or three transit events.Comment: 35 pages, 11 figures, 6 tables, accepted and published on ApJ ApJ,
776, 1
A study of hypertension in twins
A study of the blood pressure of 86 pairs of like-sexed twins over age 40 selected at random was performed. Twelve per cent were found to have a diastolic blood pressure in excess of 94 mm. Hg. In 4 out of 5 identical twin sets both members were found to have hypertension of about equal magnitude. In the fifth set, the predetermined definition of diastolic hypertension was not met in one member of the pair, although the systolic blood pressure was clearly elevated. In two identical twin sets, where information concerning previous blood pressure could be obtained, the age of onset of the hypertension differed. Among the 49 dizygetic twin sets, diastolic hypertension was found in 15 per cent of the individuals. In 3 of 12 of these pairs, it was present in both members.Since the prevalence of hypertension after age 40 in the identical twin sample resembles that in the population at large, it is concluded that the ultimate development of this condition is heavily dependent on genetic influences.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/32777/1/0000150.pd
Buttressing staples with cholecyst-derived extracellular matrix (CEM) reinforces staple lines in an ex vivo peristaltic inflation model
This is the author's accepted manuscript. The final published article is available from the link below. Copyright @ Springer Science + Business Media, LLC 2008Background - Staple line leakage and bleeding are the most common problems associated with the use of surgical staplers for gastrointestinal resection and anastomotic procedures. These complications can be reduced by reinforcing the staple lines with buttressing materials. The current study reports the potential use of cholecyst-derived extracellular matrix (CEM) in non-crosslinked (NCEM) and crosslinked (XCEM) forms, and compares their mechanical performance with clinically available buttress materials [small intestinal submucosa (SIS) and bovine pericardium (BP)] in an ex vivo small intestine model.
Methods - Three crosslinked CEM variants (XCEM0005, XCEM001, and XCEM0033) with different degree of crosslinking were produced. An ex vivo peristaltic inflation model was established. Porcine small intestine segments were stapled on one end, using buttressed or non-buttressed surgical staplers. The opened, non-stapled ends were connected to a peristaltic pump and pressure transducer and sealed. The staple lines were then exposed to increased intraluminal pressure in a peristaltic manner. Both the leak and burst pressures of the test specimens were recorded.
Results - The leak pressures observed for non-crosslinked NCEM (137.8 ± 22.3 mmHg), crosslinked XCEM0005 (109.1 ± 14.1 mmHg), XCEM001 (150.1 ± 16.0 mmHg), XCEM0033 (98.8 ± 10.5 mmHg) reinforced staple lines were significantly higher when compared to non-buttressed control (28.3 ± 10.8 mmHg) and SIS (one and four layers) (62.6 ± 11.8 and 57.6 ± 12.3 mmHg, respectively) buttressed staple lines. NCEM and XCEM were comparable to that observed for BP buttressed staple lines (138.8 ± 3.6 mmHg). Only specimens with reinforced staple lines were able to achieve high intraluminal pressures (ruptured at the intestinal mesentery), indicating that buttress reinforcements were able to withstand pressure higher than that of natural tissue (physiological failure).
Conclusions - These findings suggest that the use of CEM and XCEM as buttressing materials is associated with reinforced staple lines and increased leak pressures when compared to non-buttressed staple lines. CEM and XCEM were found to perform comparably with clinically available buttress materials in this ex vivo model.Enterprise Irelan
A novel role for XIAP in copper homeostasis through regulation of MURR1
Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/102131/1/emboj7600031.pd
Planet Hunters X: Searching for Nearby Neighbors of 75 Planet and Eclipsing Binary Candidates from the K2 Kepler Extended Mission
We present high-resolution observations of a sample of 75 K2 targets from
Campaigns 1-3 using speckle interferometry on the Southern Astrophysical
Research (SOAR) telescope and adaptive optics (AO) imaging at the Keck II
telescope. The median SOAR -band and Keck -band detection limits at 1"
were ~mag and ~mag, respectively. This
sample includes 37 stars likely to host planets, 32 targets likely to be
eclipsing binaries (EBs), and 6 other targets previously labeled as likely
planetary false positives. We find nine likely physically bound companion stars
within 3" of three candidate transiting exoplanet host stars and six likely
EBs. Six of the nine detected companions are new discoveries; one of the six,
EPIC 206061524, is associated with a planet candidate. Among the EB candidates,
companions were only found near the shortest period ones ( days), which is
in line with previous results showing high multiplicity near short-period
binary stars. This high-resolution data, including both the detected companions
and the limits on potential unseen companions, will be useful in future planet
vetting and stellar multiplicity rate studies for planets and binaries.Comment: Accepted in A
On Machine-Learned Classification of Variable Stars with Sparse and Noisy Time-Series Data
With the coming data deluge from synoptic surveys, there is a growing need
for frameworks that can quickly and automatically produce calibrated
classification probabilities for newly-observed variables based on a small
number of time-series measurements. In this paper, we introduce a methodology
for variable-star classification, drawing from modern machine-learning
techniques. We describe how to homogenize the information gleaned from light
curves by selection and computation of real-numbered metrics ("feature"),
detail methods to robustly estimate periodic light-curve features, introduce
tree-ensemble methods for accurate variable star classification, and show how
to rigorously evaluate the classification results using cross validation. On a
25-class data set of 1542 well-studied variable stars, we achieve a 22.8%
overall classification error using the random forest classifier; this
represents a 24% improvement over the best previous classifier on these data.
This methodology is effective for identifying samples of specific science
classes: for pulsational variables used in Milky Way tomography we obtain a
discovery efficiency of 98.2% and for eclipsing systems we find an efficiency
of 99.1%, both at 95% purity. We show that the random forest (RF) classifier is
superior to other machine-learned methods in terms of accuracy, speed, and
relative immunity to features with no useful class information; the RF
classifier can also be used to estimate the importance of each feature in
classification. Additionally, we present the first astronomical use of
hierarchical classification methods to incorporate a known class taxonomy in
the classifier, which further reduces the catastrophic error rate to 7.8%.
Excluding low-amplitude sources, our overall error rate improves to 14%, with a
catastrophic error rate of 3.5%.Comment: 23 pages, 9 figure
- …