9 research outputs found

    Neurotransmitter interactions in the stomatogastric system of the spiny lobster: One peptide alters the response of a central pattern generator to a second peptide

    Get PDF
    Two of the peptides found in the stomatogastric nervous system of the spiny lobster. Panulirus interruptus, interacted to modulate the activity of the cardiac sac motor pattern. In the isolated stomatogastric ganglion, red- pigment-concentrating hormone (RPCH), but not proctolin, activated the bursting activity in the inferior ventricular (IV) neurons that drives the cardiac sac pattern. The cardiac sac pattern normally ceased within 15 min after the end of RPCH superfusion. However, when proctolin was applied within a few minutes of that time, it was likewise able to induce cardiac sac activity. Similarly, proctolin applied together with subthreshold RPCH induced cardiac sac bursting. The amplitude of the excitatory postsynaptic potentials from the IV neurons to the cardiac sac dilator neuron CD2 (1 of the 2 major motor neurons in the cardiac sac system) was potentiated in the presence of both proctolin and RPCH. The potentiation in RPCH was much greater than in proctolin alone. However, the potentiation in proctolin after RPCH was equivalent to that recorded in RPCH alone. Although we do not yet understand the mechanisms for these interactions of the two modulators, this study provides an example of one factor that can determine the \u27state\u27 of the system that is critical in determining the effect of a modulator that is \u27state dependent,\u27 and it provides evidence for yet another level of flexibility in the motor output of this system

    Spatial differences in corneal electroretinogram potentials measured in rat with a contact lens electrode array

    Get PDF
    PURPOSE: It has been known for several decades that the magnitude of the corneal electroretinogram (ERG) varies with position on the eye surface, especially in the presence of focal or asymmetric stimuli or retinal lesions. However, this phenomenon has not been well-characterized using simultaneous measurements at multiple locations on the cornea. This work provides the first characterization of spatial differences in the ERG across the rat cornea. METHODS: A contact lens electrode array was employed to record ERG potentials at 25 corneal locations simultaneously following brief full-field flash stimuli in normally sighted Long-Evans rats. These multi-electrode electroretinogram (meERG) responses were analyzed for spatial differences in a-wave and b-wave amplitudes and implicit times. RESULTS: Spatially distinct ERG potentials could be recorded reliably. Comparing relative amplitudes across the corneal locations suggested a slight non-uniform distribution when using full-field, near-saturating stimuli. Amplitudes of a- and b-waves were approximately 3 % lower in the inferior quadrant than in the superior quadrant of the cornea. CONCLUSIONS: The present results comprise the start of the first normative meERG database for rat eyes and provide a basis for comparison of results from eyes with functional deficit. Robust measures of spatial differences in corneal potentials will also support optimization and validation of computational source models of the ERG. To fully utilize the information contained in the meERG data, a detailed understanding of the roles of the many determinants of local corneal potentials will eventually be required

    Session 2: UM Multidisciplinary Research Session: Working Across the Biological and Physical Sciences

    No full text
    John R. Hetling is from the Department of Bioengineering at the University of Illinois at Chicago

    Chronic Delivery of Low-Level Exogenous Current Preserves Retinal Function in Pigmented P23H Rat

    Get PDF
    Diffuse electrical currents delivered to the eye were investigated in a rat model of retinitis pigmentosa for potentially therapeutic effects. Low-level currents were passed between electrodes placed on the cornea and in the mouth during 30-minute sessions two times per week from 4-16 weeks of age. Single-flash electroretinograms (ERG) were recorded and analyzed for amplitude and measures of sensitivity, and basic histology was performed. ERG a-wave amplitudes were slightly greater in treated vs. age-matched controls at 16 wks of age, but the combined thicknesses of the outer nuclear layer and outer segment layer were similar at this age. Treated animals exhibited a significant preservation of b-wave amplitudes, and a striking preservation of rod sensitivity, measured as the stimulus strength required to reach half-saturation of the a-wave. Analysis of the leading edge of the a-wave using a delayed Gaussian function revealed a decrease in the parameter reflecting gain of the phototransduction cascade over the 12-week course of treatment, and no significant change in control animals over the same period. These results suggest that while the exogenous currents failed to preserve the number or gross structure of rods, the responsivity of individual photoreceptors was relatively preserved, perhaps via an increase in efficiency of photon capture (R* / photon). This preserved functionality may delay the retraction of bipolar cell dendrites from degenerating photoreceptors

    Neurotransmitter Interactions in the Stomatogastric System of the Spiny Lobster: One Peptide Alters the Response of a Central Pattern Generator to a Second Peptide

    No full text
    Two of the peptides found in the stomatogastric nervous system of the spiny lobster. Panulirus interruptus, interacted to modulate the activity of the cardiac sac motor pattern. In the isolated stomatogastric ganglion, red- pigment-concentrating hormone (RPCH), but not proctolin, activated the bursting activity in the inferior ventricular (IV) neurons that drives the cardiac sac pattern. The cardiac sac pattern normally ceased within 15 min after the end of RPCH superfusion. However, when proctolin was applied within a few minutes of that time, it was likewise able to induce cardiac sac activity. Similarly, proctolin applied together with subthreshold RPCH induced cardiac sac bursting. The amplitude of the excitatory postsynaptic potentials from the IV neurons to the cardiac sac dilator neuron CD2 (1 of the 2 major motor neurons in the cardiac sac system) was potentiated in the presence of both proctolin and RPCH. The potentiation in RPCH was much greater than in proctolin alone. However, the potentiation in proctolin after RPCH was equivalent to that recorded in RPCH alone. Although we do not yet understand the mechanisms for these interactions of the two modulators, this study provides an example of one factor that can determine the \u27state\u27 of the system that is critical in determining the effect of a modulator that is \u27state dependent,\u27 and it provides evidence for yet another level of flexibility in the motor output of this system
    corecore