63 research outputs found

    Persistent global power fluctuations near a dynamic transition in electroconvection

    Full text link
    This is a study of the global fluctuations in power dissipation and light transmission through a liquid crystal just above the onset of electroconvection. The source of the fluctuations is found to be the creation and annihilation of defects. They are spatially uncorrelated and yet temporally correlated. The temporal correlation is seen to persist for extremely long times. There seems to be an especially close relation between defect creation/annihilat ion in electroconvection and thermal plumes in Rayleigh-B\'enard convection

    Identification of a Classical Bipartite Nuclear Localization Signal in the Drosophila TEA/ATTS Protein Scalloped

    Get PDF
    Drosophila melanogaster wing development has been shown to rely on the activity of a complex of two proteins, Scalloped (Sd) and Vestigial (Vg). Within this complex, Sd is known to provide DNA binding though its TEA/ATTS domain, while Vg modulates this binding and provides transcriptional activation through N- and C-terminal activation domains. There is also evidence that Sd is required for the nuclear translocation of Vg. Indeed, a candidate sequence which shows consensus to the bipartite family of nuclear localization signals (NLSs) has been identified within Sd previously, though it is not known if it is functional, or if additional unpredicted signals that mediate nuclear transport exist within the protein. By expressing various enhanced green fluorescent protein (eGFP) tagged constructs within Drosophila S2 cells, we demonstrate that this NLS is indeed functional and necessary for the proper nuclear localization of Sd. Additionally, the region containing the NLS is critical for the wildtype function of ectopically expressed Sd, in the context of wing development. Using site-directed mutagenesis, we have identified a group of five amino acids within this NLS which is critical for its function, as well as another group of two which is of lesser importance. Together with data that suggests that this sequence mediates interactions with Importin-α3, we conclude that the identified NLS is likely a classical bipartite signal. Further dissection of Sd has also revealed that a large portion of the C-terminal domain of the protein is required its proper nuclear localization. Finally, a Leptomycin B (LB) sensitive signal which appears to facilitate nuclear export is identified, raising the possibility that Sd also contains a nuclear export signal (NES)

    Controlling seizure-like events by perturbing ion concentration dynamics with periodic stimulation.

    Get PDF
    We investigate the effects of adding periodic stimulation to a generic, conductance-based neuron model that includes ion concentration dynamics of sodium and potassium. Under conditions of high extracellular potassium, the model exhibits repeating, spontaneous, seizure-like bursting events associated with slow modulation of the ion concentrations local to the neuron. We show that for a range of parameter values, depolarizing and hyperpolarizing periodic stimulation pulses (including frequencies lower than 4 Hz) can stop the spontaneous bursting by interacting with the ion concentration dynamics. Stimulation can also control the magnitude of evoked responses to modeled physiological inputs. We develop an understanding of the nonlinear dynamics of this system by a timescale separation procedure that identifies effective nullclines in the ion concentration parameter space. Our results suggest that the manipulation of ion concentration dynamics via external or endogenous stimulation may play an important role in neuronal excitability, seizure dynamics, and control
    corecore