25 research outputs found
Left, right, left, right, eyes to the front! Müller-Lyer bias in grasping is not a function of hand used, hand preferred or visual hemifield, but foveation does matter
We investigated whether the control of movement of the left hand is more likely to involve the use of allocentric information than movements performed with the right hand. Previous studies (Gonzalez et al. in J Neurophys 95:3496–3501, 2006; De Grave et al. in Exp Br Res 193:421–427, 2009) have reported contradictory findings in this respect. In the present study, right-handed participants (N = 12) and left-handed participants (N = 12) made right- and left-handed grasps to foveated objects and peripheral, non-foveated objects that were located in the right or left visual hemifield and embedded within a Müller-Lyer illusion. They were also asked to judge the size of the object by matching their hand aperture to its length. Hand apertures did not show significant differences in illusory bias as a function of hand used, handedness or visual hemifield. However, the illusory effect was significantly larger for perception than for action, and for the non-foveated compared to foveated objects. No significant illusory biases were found for reach movement times. These findings are consistent with the two-visual system model that holds that the use of allocentric information is more prominent in perception than in movement control. We propose that the increased involvement of allocentric information in movements toward peripheral, non-foveated objects may be a consequence of more awkward, less automatized grasps of nonfoveated than foveated objects. The current study does not support the conjecture that the control of left-handed and right-handed grasps is predicated on different sources of information
A generalized analysis of thermal and mechanical loads in inertial confinement reactors
An analysis of thermal and mechanical loads acting on an inertial confinement fusion (or fusion/fission) reactor is presented. It is shown that, as a result of the pulsed mode of operation, quasi-steady-state temperatures and stresses can be separated into static and dynamic components. Numerical results are presented for a specific design of a spherical fusion/fission reactor with a lithium-wetted wall. For the purpose of scaling, materials selection, and fatigue damage assessment, approximate formulas for temperatures and stresses are also given. © 1980 Taylor & Francis Group, LLC