6,618 research outputs found

    Twentieth Century Geomorphic Changes of the Lower Green River in Canyonlands National Park, Utah: An Investigation of Timing, Magnitude and Process

    Get PDF
    Since the early 20th century, the Green River, the longest tributary of the Colorado River, has narrowed, decreasing available riparian and aquatic habitat. Initially, the widespread establishment of non-native tamarisk was considered to be the primary driver of channel narrowing. An alternative hypothesis postulated that changes in hydrology drove narrowing. Reductions in total streamflow and changes to flow regime occurred due to wide-spread water development, decreased snowmelt flood magnitude, and the increased cyclicity of wet and dry years. The two hypotheses agree on channel narrowing, but each influences modern river management differently. A tamarisk-driven model of narrowing implies that modern flow management doesn’t substantially affect channel change. Conversely, channel narrowing driven by changes in hydrology implies that present flow management decisions matter and continued adjustments to flow regime may result in future channel change. To understand the roles of decreasing total annual flow, declining annual peak flood magnitude, and changing vegetation communities on 20th century channel narrowing, we investigated channel narrowing along the lower Green River within Canyonlands National Park (CNP). Previous studies agree that the channel has narrowed, however, the rate, timing and magnitude of documented narrowing are only partially understood. Multiple lines of evidence were used to reconstruct the history of channel narrowing in the lower Green River. This study focuses on channel narrowing, but additionally investigated possible changes to channel depth, identified process, timing and magnitude of floodplain formation. Floodplain formation was described in the field using stratigraphy, sedimentology, and dendrogeomorphology exposed in a floodplain trench. Channel and floodplain surveys were conducted to determine possible changes in bed elevation. Additionally, existing aerial imagery, hydrologic data, and sediment transport data were analyzed. These techniques were applied to determine magnitude, timing and processes of channel narrowing at multiple spatial and temporal scales. The floodplain investigation identified a new period of channel narrowing by vertical accretion after high peak flow years of 1983 and 1984. Narrowing was initiated by vertical accretion in the active channel, deposited by moderate floods exceeded more than 50% of the time. Vertical accretion continued in the early 1990s, converting the active channel into a periodically inundated floodplain surface. Suspended-sediment deposition dominated deposits, resulting in the formation of natural levees and floodplain troughs in both inset floodplains. Rates of deposition were highly variable, ranging from 0.03-0.50 m/yr. The lower Green River within Canyonlands National Park has narrowed substantially since the late 1800s, resulting in a narrower channel. Changes to flood magnitude, rate and timing since 1900, driven by increased water storage and diversion in the Green River basin and declines in annual precipitation, were responsible for inset floodplain formation. Floodplains of the contemporary lower Green River in CNP began forming in the late 1930s and continued to form and vertically aggrade in the 20th century by inset floodplain formation. During this time period, peak flow and total runoff declined due to climatic changes and water development. Analysis of aerial imagery covering 61 kilometers (km) of the Green River in CNP shows that changes to the floodplain identified in the trench are representative of the entire study area. The establishment of non-native tamarisk (Tamarix spp.) did not drive channel narrowing, though dense stands stabilized banks and likely promoted sediment deposition. The lower Green River narrowed 12% from 1940-2014, with the majority of narrowing (10% of all narrowing) occurring from the 1980s to the present. Inset floodplain formation reflects changes to flood magnitude and timing resulting from water development and decreases in natural runoff. Findings suggest that long-term management of the riverine corridor within Canyonlands National Park will require a greater focus on upstream flow contributions and how those flows are currently managed. Recovery of endangered endemic native fishes, the Colorado pikeminnow (Ptychocheilus lucius), and the razorback sucker (Xyrauchen texanus), plays a primary role in determining current flow allocations. Collaboration with upstream stakeholders and managers is necessary to maximize elements of the flow regime that preserve channel width and limit channel narrowing

    An Overview of MOOS-IvP and a Users Guide to the IvP Helm Autonomy Software

    Get PDF
    This document describes the IvP Helm -- an Open Source behavior-based autonomy application for unmanned vehicles. IvP is short for interval programming -- a technique for representing and solving multi-objective optimizations problems. Behaviors in the IvP Helm are reconciled using multi-objective optimization when in competition with each other for influence of the vehicle. The IvP Helm is written as a MOOS application where MOOS is a set of Open Source publish-subscribe autonomy middleware tools. This document describes the configuration and use of the IvP Helm, provides examples of simple missions and information on how to download and build the software from the MOOS-IvP server at www.moosivp.org

    An Overview of MOOS-IvP and a Users Guide to the IvP Helm - Release 4.2.1

    Get PDF
    This document describes the IvP Helm - an Open Source behavior-based autonomy application for unmanned vehicles. IvP is short for interval programming - a technique for representing and solving multi-objective optimizations problems. Behaviors in the IvP Helm are reconciled using multi-objective optimization when in competition with each other for influence of the vehicle. The IvP Helm is written as a MOOS application where MOOS is a set of Open Source publish-subscribe autonomy middleware tools. This document describes the configuration and use of the IvP Helm, provides examples of simple missions and information on how to download and build the software from the MOOS-IvP server at www.moos-ivp.org.United States. Office of Naval Research (Code 311

    Extending a MOOS-IvP Autonomy System and Users Guide to the IvPBuild Toolbox

    Get PDF
    This document describes how to extend the suite of MOOS applications and IvP Helm behaviors distributed with the MOOS-IvP software bundle from www.moos-ivp.org. It covers (a) a straw-man repository with a place-holder MOOS application and IvP Behavior, with a working CMake build structure, (b) a brief overview of the MOOS application class with an example application, (c) an overview of the IvP Behavior class with an example behavior, and (d) the IvPBuild Toolbox for generation of objective functions within behaviors

    A Tour of MOOS-IvP Autonomy Software Modules

    Get PDF
    This paper provides an overview of the MOOS-IvP autonomy software modules. The MOOS-IvP collection of software, i.e., codebase, described here has been developed and is currently maintained by three organizations - Oxford University, Massachusetts Institute of Technology (MIT), and the Naval Undersea Warfare Center (NUWC) Division Newport Rhode Island. The objective of this paper is to provide a comprehensive list of modules and provide for each (a) a general description of functionality, (b) dependency relationships to other modules, (c) rough order of magnitude in complexity or size, (d) authorship, and (e) current and planned distribution access

    An Overview of MOOS-IvP and a Brief Users Guide to the IvP Helm Autonomy Software

    Get PDF
    This document describes the IvP Helm - an Open Source behavior-based autonomy application for unmanned vehicles. IvP is short for interval programming - a technique for representing and solving multi-objective optimizations problems. Behaviors in the IvP Helm are reconciled using multi-objective optimization when in competition with each other for influence of the vehicle. The IvP Helm is written as a MOOS application where MOOS is a set of Open Source publish-subscribe autonomy middleware tools. This document describes the configuration and use of the IvP Helm, provides examples of simple missions and information on how to download and build the software from the MOOS-IvP server at www.moosivp.org

    Riparian vegetation, Colorado River, and climate: Five decades of spatiotemporal dynamics in the Grand Canyon with river regulation

    Get PDF
    Documentation of the interacting effects of river regulation and climate on riparian vegetation has typically been limited to small segments of rivers or focused on individual plant species. We examine spatiotemporal variability in riparian vegetation for the Colorado River in Grand Canyon relative to river regulation and climate, over the five decades since completion of the upstream Glen Canyon Dam in 1963. Long-term changes along this highly modified, large segment of the river provide insights for management of similar riparian ecosystems around the world. We analyze vegetation extent based on maps and imagery from eight dates between 1965 and 2009, coupled with the instantaneous hydrograph for the entire period. Analysis confirms a net increase in vegetated area since completion of the dam. Magnitude and timing of such vegetation changes are river stage-dependent. Vegetation expansion is coincident with inundation frequency changes and is unlikely to occur for time periods when inundation frequency exceeds approximately 5%. Vegetation expansion at lower zones of the riparian area is greater during the periods with lower peak and higher base flows, while vegetation at higher zones couples with precipitation patterns and decreases during drought. Short pulses of high flow, such as the controlled floods of the Colorado River in 1996, 2004, and 2008, do not keep vegetation from expanding onto bare sand habitat. Management intended to promote resilience of riparian vegetation must contend with communities that are sensitive to the interacting effects of altered flood regimes and water availability from river and precipitation. å©2015. American Geophysical Union. All Rights Reserved

    Linking morphodynamic response with sediment mass balance on the Colorado River in Marble Canyon: Issues of scale, geomorphic setting, and sampling design

    Get PDF
    Measurements of morphologic change are often used to infer sediment mass balance. Such measurements may, however, result in gross errors when morphologic changes over short reaches are extrapolated to predict changes in sediment mass balance for long river segments. This issue is investigated by examination of morphologic change and sediment influx and efflux for a 100 km segment of the Colorado River in Grand Canyon, Arizona. For each of four monitoring intervals within a 7 year study period, the direction of sand-storage response within short morphologic monitoring reaches was consistent with the flux-based sand mass balance. Both budgeting methods indicate that sand storage was stable or increased during the 7 year period. Extrapolation of the morphologic measurements outside the monitoring reaches does not, however, provide a reasonable estimate of the magnitude of sand-storage change for the 100 km study area. Extrapolation results in large errors, because there is large local variation in site behavior driven by interactions between the flow and local bed topography. During the same flow regime and reach-average sediment supply, some locations accumulate sand while others evacuate sand. The interaction of local hydraulics with local channel geometry exerts more control on local morphodynamic response than sand supply over an encompassing river segment. Changes in the upstream supply of sand modify bed responses but typically do not completely offset the effect of local hydraulics. Thus, accurate sediment budgets for long river segments inferred from reach-scale morphologic measurements must incorporate the effect of local hydraulics in a sampling design or avoid extrapolation altogether

    Prospectus, January 25, 1984

    Get PDF
    TODAY\u27S FOCUS: THE SOUTH WING; News Digest; South wing improves Parkland; Board summary; Rotary scholarships now available to students; United mime workers to perforn; PACT program offered; Parenting program available; Theatre auditions; EMT workshop; Study abroad; Jazz combo; 562 earn Parkland honors during fall semester; P.A.L. there if needed; Treat winter coughs with right medicines; Foreign students expand interests and awareness in U.S.; I.S.O. helps foreign students; What to do about frozen pipes; National origin an influence on economic decisions; Question: What resolutions have you maid for 1984?; Classifieds; Terrorism on the rise in the Middle East; Bottled water may or may not be better; Illinois\u27 prison problem to be discussed at conference; Concert news; Life at the south wing; Pump Boys and Dinettes --musical with flair; In the Library-- P section; Murphy: comedian ; Brey cellist recital; Alabama comes to area; WILL celebrates black history month; Two more films added; Metheny group--jazz and rock; Testament aftermath of war; Poor elderly decreasing in Illinois; Teens need food energy; Public favors victim compensation; A cold night in Champaign-Urbana; Cobras victorious; Free throws edge; I.M. Newshttps://spark.parkland.edu/prospectus_1984/1032/thumbnail.jp

    Economic development, human development, and the pursuit of happiness, April 1, 2, and 3, 2004

    Full text link
    This repository item contains a single issue of the Pardee Conference Series, a publication series that began publishing in 2006 by the Boston University Frederick S. Pardee Center for the Study of the Longer-Range Future. This was the Center's spring conference, which took place during April 1, 2, and 3, 2004.The conference asks the questions, how can we make sure that the benefits of economic growth flow into health, education, welfare, and other aspects of human development; and what is the relationship between human development and economic development? Speakers and participants discuss the role that culture, legal and political institutions, the UN Developmental Goals, the level of decision-making, and ethics, play in development
    • …
    corecore