49 research outputs found

    Analysis of the Role of Ubiquitin-interacting Motifs in Ubiquitin Binding and Ubiquitylation

    Get PDF
    The ubiquitin-interacting motif (UIM) is a short peptide motif with the dual function of binding ubiquitin and promoting ubiquitylation. This motif is conserved throughout eukaryotes and is present in numerous proteins involved in a wide variety of cellular processes including endocytosis, protein trafficking, and signal transduction. We previously reported that the UIMs of epsin were both necessary and sufficient for its ubiquitylation. In this study, we found that many, but not all, UIM-containing proteins were ubiquitylated. When expressed as chimeric fusion proteins, most UIMs promoted ubiquitylation of the chimera. In contrast to previous studies, we found that UIMs do not exclusively promote monoubiquitylation but rather a mixture of mono-, multi-, and polyubiquitylation. However, UIM-dependent polyubiquitylation does not lead to degradation of the modified protein. UIMs also bind polyubiquitin chains of varying lengths and to different degrees, and this activity is required for UIM-dependent ubiquitylation. Mutational analysis of the UIM revealed specific amino acids that are important for both polyubiquitin binding and ubiquitin conjugation. Finally we provide evidence that UIM-dependent ubiquitylation inhibits the interaction of UIM-containing proteins with other ubiquitylated cellular proteins. Our results suggest a new model for the ubiquitylation of UIM-containing proteins

    The Src Homology 2 and Phosphotyrosine Binding Domains of the ShcC Adaptor Protein Function as Inhibitors of Mitogenic Signaling by the Epidermal Growth Factor Receptor

    Get PDF
    Upon ligand activation, the epidermal growth factor receptor (EGFR) becomes tyrosine-phosphorylated, thereby recruiting intracellular signaling proteins such as Shc. EGFR binding of Shc proteins results in their tyrosine phosphorylation and subsequent activation of the Ras and Erk pathways. Shc interaction with activated receptor tyrosine kinases is mediated by two distinct phosphotyrosine interaction domains, an NH2-terminal phosphotyrosine binding (PTB) domain and a COOH-terminal Src homology 2 (SH2) domain. The relative importance of these two domains for EGFR binding was examined by determining if expression of the isolated SH2 or PTB domain of ShcC would inhibit EGFR signaling. The SH2 domain potently inhibited numerous aspects of EGFR signaling including activation of Erk2 and the Elk-1 transcription factor as well as EGFR-dependent transformation. Furthermore, the SH2 domain inhibited focus formation by the Neu oncoprotein, another EGFR family member. Surprisingly, inhibition of the EGFR by the SH2 domain did not involve stable association with the receptor. In contrast, the PTB domain associated quite well with the receptor yet had little effect on EGFR signaling. Although the EGFR cytoplasmic tail contains consensus binding sites for the PTB and SH2 domains of ShcC, and both domains of ShcC interact with the receptor in vitro, the SH2 domain is more potent for inhibiting receptor function in vivo. However, inhibition is not due to stable association with the receptor, suggesting that the SH2 domain is binding to a heretofore unknown protein(s) necessary for proper EGFR function

    Cardiac-Specific Expression of the Tetracycline Transactivator Confers Increased Heart Function and Survival Following Ischemia Reperfusion Injury

    Get PDF
    Mice expressing the tetracycline transactivator (tTA) transcription factor driven by the rat α-myosin heavy chain promoter (α-MHC-tTA) are widely used to dissect the molecular mechanisms involved in cardiac development and disease. However, these α-MHC-tTA mice exhibit a gain-of-function phenotype consisting of robust protection against ischemia/reperfusion injury in both in vitro and in vivo models in the absence of associated cardiac hypertrophy or remodeling. Cardiac function, as assessed by echocardiography, did not differ between α-MHC-tTA and control animals, and there were no noticeable differences observed between the two groups in HW/TL ratio or LV end-diastolic and end-systolic dimensions. Protection against ischemia/reperfusion injury was assessed using isolated perfused hearts where α-MHC-tTA mice had robust protection against ischemia/reperfusion injury which was not blocked by pharmacological inhibition of PI3Ks with LY294002. Furthermore, α-MHC-tTA mice subjected to coronary artery ligation exhibited significantly reduced infarct size compared to control animals. Our findings reveal that α-MHC-tTA transgenic mice exhibit a gain-of-function phenotype consisting of robust protection against ischemia/reperfusion injury similar to cardiac pre- and post-conditioning effects. However, in contrast to classical pre- and post-conditioning, the α-MHC-tTA phenotype is not inhibited by the classic preconditioning inhibitor LY294002 suggesting involvement of a non-PI3K-AKT signaling pathway in this phenotype. Thus, further study of the α-MHC-tTA model may reveal novel molecular targets for therapeutic intervention during ischemic injury

    Current global status of male reproductive health

    Get PDF
    BACKGROUND: The widespread interest in male reproductive health (MRH), fueled by emerging evidence, such as the global decline in sperm counts, has intensified concerns about the status of MRH. Consequently, there is a pressing requirement for a strategic, systematic approach to identifying critical questions, collecting pertinent information, and utilizing these data to develop evidence-based strategies. The methods for addressing these questions and the pathways toward their answers will inevitably vary based on the variations in cultural, geopolitical, and health-related contexts. To address these issues, a conjoint ESHRE and Male Reproductive Health Initiative (MRHI) Campus workshop was convened.OBJECTIVE AND RATIONALE: The three objectives were: first, to assess the current state of MRH around the world; second, to identify some of the key gaps in knowledge; and, third, to examine how MRH stakeholders can collaboratively generate intelligent and effective paths forward.SEARCH METHODS: Each expert reviewed and summarized the current literature that was subsequently used to provide a comprehensive overview of challenges related to MRH.OUTCOMES: This narrative report is an overview of the data, opinions, and arguments presented during the workshop. A number of outcomes are presented and can be summarized by the following overarching themes: MRH is a serious global issue and there is a plethora of gaps in our understanding; there is a need for widespread international collaborative networks to undertake multidisciplinary research into fundamental issues, such as lifestyle/environmental exposure studies, and high-quality clinical trials; and there is an urgent requirement for effective strategies to educate young people and the general public to safeguard and improve MRH across diverse population demographics and resources.LIMITATIONS REASONS FOR CAUTION: This was a workshop where worldwide leading experts from a wide range of disciplines presented and discussed the evidence regarding challenges related to MRH. While each expert summarized the current literature and placed it in context, the data in a number of areas are limited and/or sparse. Equally, important areas for consideration may have been missed. Moreover, there are clear gaps in our knowledge base, which makes some conclusions necessarily speculative and warranting of further study.WIDER IMPLICATIONS: Poor MRH is a global issue that suffers from low awareness among the public, patients, and heathcare professionals. Addressing this will require a coordinated multidisciplinary approach. Addressing the significant number of knowledge gaps will require policy makers prioritizing MRH and its funding.STUDY FUNDING/COMPETING INTERESTS: The authors would like to extend their gratitude to ESHRE for providing financial support for the Budapest Campus Workshop, as well as to Microptic S.L. (Barcelona) for kindly sponsoring the workshop. P.B. is the Director of the not-for-profit organization Global Action on Men's Health and receives fees and expenses for his work, (which includes the preparation of this manuscript). Conflicts of interest: C.J.D.J., C.L.R.B., R.A.A., P.B., M.P.C., M.L.E., N.G., N.J., C.K., AAP, M.K.O., S.R.-H., M.H.V.-L.: ESHRE Campus Workshop 2022 (Travel support-personal). C.J.D.J.: Cambridge University Press (book royalties-personal). ESHRE Annual Meeting 2022 and Yale University Panel Meeting 2023 (Travel support-personal). C.L.R.B.: Ferring and IBSA (Lecture), RBMO editor (Honorarium to support travel, etc.), ExSeed and ExScentia (University of Dundee), Bill &amp; Melinda Gates Foundation (for research on contraception). M.P.C.: Previously received funding from pharmaceutical companies for health economic research. The funding was not in relation to this work and had no bearing on the contents of this work. No funding from other sources has been provided in relation to this work (funding was provided to his company Global Market Access Solutions). M.L.E.: Advisor to Ro, Doveras, Next, Hannah, Sandstone. C.K.: European Academy of Andrology (Past president UNPAID), S.K.: CEO of His Turn, a male fertility Diagnostic and Therapeutic company (No payments or profits to date). R.I.M.: www.healthymale.org.au (Australian Government funded not for profit in men's health sector (Employed as Medical Director 0.2 FET), Monash IVF Pty Ltd (Equity holder)). N.J.: Merck (consulting fees), Gedeon Richter (honoraria). S.R.-H.: ESHRE (Travel reimbursements). C.N.: LLC (Nursing educator); COMMIT (Core Outcomes Measures for Infertility Trials) Advisor, meeting attendee, and co-author; COMMA (Core Outcomes in Menopause) Meeting attendee, and co-author; International Federation of Gynecology and Obstetrics (FIGO) Delegate Letters and Sciences; ReproNovo, Advisory board; American Board of Urology Examiner; American Urological Association Journal subsection editor, committee member, guidelines co-author Ferring Scientific trial NexHand Chief Technology Officer, stock ownership Posterity Health Board member, stock ownership. A.P.: Economic and Social Research Council (A collaborator on research grant number ES/W001381/1). Member of an advisory committee for Merck Serono (November 2022), Member of an advisory board for Exceed Health, Speaker fees for educational events organized by Mealis Group; Chairman of the Cryos External Scientific Advisory Committee: All fees associated with this are paid to his former employer The University of Sheffield. Trustee of the Progress Educational Trust (Unpaid). M.K.O.: National Health and Medical Research Council and Australian Research Council (Funding for research of the topic of male fertility), Bill and Melinda Gates Foundation (Funding aimed at the development of male gamete-based contraception), Medical Research Future Fund (Funding aimed at defining the long-term consequences of male infertility). M.H.V.-L.: Department of Sexual and Reproductive Health and Research (SRH)/Human Reproduction Programme (HRP) Research Project Panel RP2/WHO Review Member; MRHI (Core Group Member), COMMIT (member), EGOI (Member); Human Reproduction (Associate Editor), Fertility and Sterility (Editor), AndroLATAM (Founder and Coordinator).</p

    Genome-wide analysis identifies 12 loci influencing human reproductive behavior.

    Get PDF
    The genetic architecture of human reproductive behavior-age at first birth (AFB) and number of children ever born (NEB)-has a strong relationship with fitness, human development, infertility and risk of neuropsychiatric disorders. However, very few genetic loci have been identified, and the underlying mechanisms of AFB and NEB are poorly understood. We report a large genome-wide association study of both sexes including 251,151 individuals for AFB and 343,072 individuals for NEB. We identified 12 independent loci that are significantly associated with AFB and/or NEB in a SNP-based genome-wide association study and 4 additional loci associated in a gene-based effort. These loci harbor genes that are likely to have a role, either directly or by affecting non-local gene expression, in human reproduction and infertility, thereby increasing understanding of these complex traits

    A new dimension to Ras function: a novel role for nucleotide-free Ras in Class II phosphatidylinositol 3-kinase beta (PI3KC2β) regulation.

    Get PDF
    The intersectin 1 (ITSN1) scaffold stimulates Ras activation on endocytic vesicles without activating classic Ras effectors. The identification of Class II phosphatidylinositol 3-kinase beta, PI3KC2β, as an ITSN1 target on vesicles and the presence of a Ras binding domain (RBD) in PI3KC2β suggests a role for Ras in PI3KC2β activation. Here, we demonstrate that nucleotide-free Ras negatively regulates PI3KC2β activity. PI3KC2β preferentially interacts in vivo with dominant-negative (DN) Ras, which possesses a low affinity for nucleotides. PI3KC2β interaction with DN Ras is disrupted by switch 1 domain mutations in Ras as well as RBD mutations in PI3KC2β. Using purified proteins, we demonstrate that the PI3KC2β-RBD directly binds nucleotide-free Ras in vitro and that this interaction is not disrupted by nucleotide addition. Finally, nucleotide-free Ras but not GTP-loaded Ras inhibits PI3KC2β lipid kinase activity in vitro. Our findings indicate that PI3KC2β interacts with and is regulated by nucleotide-free Ras. These data suggest a novel role for nucleotide-free Ras in cell signaling in which PI3KC2β stabilizes nucleotide-free Ras and that interaction of Ras and PI3KC2β mutually inhibit one another
    corecore