1,388 research outputs found

    Lesions of the Rat Perirhinal Cortex Spare the Acquisition of a Complex Configural Visual Discrimination Yet Impair Object Recognition

    Get PDF
    Rats with perirhinal cortex lesions were sequentially trained in a rectangular water tank on a series of 3 visual discriminations, each between mirror-imaged stimuli. When these same discriminations were tested concurrently, the rats were forced to use a configural strategy to solve the problems effectively. There was no evidence that lesions of the perirhinal cortex disrupted the ability to learn the concurrent configural discrimination task, which required the rats to learn the precise combination of stimulus identity with stimulus placement (ā€œstructuralā€ learning). The same rats with perirhinal cortex lesions were also unimpaired on a test of spatial working memory (reinforced T maze alternation), although they were markedly impaired on a new test of spontaneous object recognition. For the recognition test, rats received multiple trials within a single session in which on every trial, they were allowed to explore 2 objects, 1 familiar, the other novel. On the basis of their differential exploration times, rats with perirhinal cortex lesions showed very poor discrimination of the novel objects, thereby confirming the effectiveness of the surgery. The discovery that bilateral lesions of the perirhinal cortex can leave configural (structural) learning seemingly unaffected points to a need to refine those models of perirhinal cortex function that emphasize its role in representing conjunctions of stimulus features

    Memory: looking back and looking forward

    Get PDF
    This review brings together past and present achievements in memory research, ranging from molecular to psychological discoveries. Despite some false starts, major advances include our growing understanding of learning-related neural plasticity and the characterisation of different classes of memory. One striking example is the ability to reactivate targeted neuronal ensembles so that an animal will seemingly re-experience a particular memory, with the further potential to modify such memories. Meanwhile, human functional imaging studies can distinguish individual episodic memories based on voxel activation patterns. While the hippocampus continues to provide a rich source of information, future progress requires broadening our research to involve other sites. Related challenges include the need to understand better the role of glial-neuron interactions and to look beyond the synapse as the sole site of experience-dependent plasticity. Unmet goals include translating our neuroscientific knowledge in order to optimise learning and memory, especially amongst disadvantaged populations

    Different contributions of the hippocampus and perirhinal cortex to recognition memory

    Get PDF
    Brain regions involved in visual recognition memory, including the hippocampus, have been investigated by measuring differential neuronal activation produced by novel and familiar pictures. Novel and familiar pictures were presented simultaneously, one to each eye, using a paired viewing procedure. Differential neuronal activation was determined using immunohistochemistry for the protein products of c-fos as an imaging technique. The results establish that the regions of the rat brain associated with discriminating the novelty or familiarity of an individual item (such as a single object) differ from those responding to a spatial array of items (such as a scene). Perirhinal cortex and area TE of the temporal lobe are activated significantly more by pictures of novel than of familiar individual objects, but the hippocampus is not differentially activated. In contrast, pictures of novel arrangements of familiar items produce significantly greater activation than familiar arrangements of these items in postrhinal cortex and subfield CA1 of the hippocampus but significantly less activation in the dentate gyrus and subiculum; perirhinal cortex and area TE are not differentially activated. Thus, the hippocampus is importantly involved in processing information essential to recognition memory concerning the relative familiarity of arrangements of items, as needed for episodic memory of scenes, whereas the perirhinal cortex processes such information for individual items

    Do the rat anterior thalamic nuclei contribute to behavioural flexibility?

    Get PDF
    The rodent anterior thalamic nuclei (ATN) are vital for spatial memory. A consideration of their extensive frontal connections suggests that these nuclei may also subserve non-spatial functions. The current experiments explored the importance of the ATN for different aspects of behavioural flexibility, including their contribution to tasks typically associated with frontal cortex. In Experiment 1, rats with ATN lesions were tested on a series of response and visual discriminations in an operant box and, subsequently, in a water tank. The tasks included assessments of reversal learning as well switches between each discrimination dimension. Results revealed a mild and transient deficit on the operant task that was not specific to any stage of the procedure. In the water tank, the lesion animals were impaired on the reversal of a spatial discrimination but did not differ from controls on any other measure. Experiment 2 examined the impact of ATN damage on a rodent analogue of the ā€˜Stroopā€™, which assesses response choice during stimulus conflict. The lesion animals successfully acquired this task and were able to use contextual information to disambiguate conflicting cue information. However, responding during the initial presentation of conflicting cue information was affected by the lesion. Taken together, these results suggest that the ATN are not required for aspects of behavioural flexibility (discrimination learning, reversals or high-order switches) typically associated with the rat medial prefrontal cortex. The results from Experiment 2 suggest that the non-spatial functions of the ATN may be more aligned with those of the anterior cingulate cortex

    Perirhinal cortex lesions impair tests of object recognition memory but spare novelty detection

    Get PDF
    This article is protected by copyright. All rights reserved. Acknowledgements This work was supported by the Wellcome Trust (WT103722/Z/14/Z). The authors wish to thank L. Kinnavane and J. M. Pearce for their contributions to the manuscript. The authors confirm that they have no known conflicts of interest.Peer reviewedPublisher PD

    Neurotoxic lesions of the dorsomedial thalamus impair the acquisition but not the performance of delayed matching to place by rats: a deficit in shifting response rules

    Get PDF
    This study examined the acquisition of a T-maze matching to place task by rats with neurotoxic lesions of the thalamic nucleus medialis dorsalis. This test of spatial working memory also entails learning a task rule that is contrary to the animalsā€™ innate preference. The rats next performed the same matching task over different retention delays. Finally, they were trained on a reversal of the task rule, i.e., to nonmatch to place. Although the lesions produced a clear acquisition impairment on the matching task, there was no evidence of a loss of working memory. A series of control tasks found no appreciable effect on a conditioned cue preference task or on open field activity. The pattern of results shows that medialis dorsalis lesions lead to a selective increase in perseverative behavior that can retard task acquisition. This perseverative deficit closely resembles that observed after prefrontal damage in rats, strongly indicating dysfunction in a common system

    Distinct subdivisions of the cingulum bundle revealed by diffusion MRI fibre tracking: Implications for neuropsychological investigations

    Get PDF
    The cingulum is a prominent white matter tract that supports prefrontal, parietal, and temporal lobe interactions. Despite being composed of both short and long association fibres, many MRI-based reconstructions ( tractography ) of the cingulum depict an essentially uniform tract that almost encircles the corpus callosum. The present study tested the validity of dividing this tract into subdivisions corresponding to the ā€˜parahippocampalā€™, ā€˜retrosplenialā€™, and ā€˜subgenualā€™ portions of the cingulum. These three cingulum subdivisions occupied different medialā€“lateral locations, producing a topographic arrangement of cingulum fibres. Other comparisons based on these different reconstructions indicate that only a small proportion of the total white matter in the cingulum traverses the length of the tract. In addition, both the radial diffusivity and fractional anisotropy of the subgenual subdivision differed from that of the retrosplenial subdivision which, in turn, differed from that of the parahippocampal subdivision. The extent to which the radial diffusivity scores and the fractional anisotropy scores correlated between the various cingulum subdivisions proved variable, illustrating how one subdivision may not act as a proxy for other cingulum subdivisions. Attempts to relate the status of the cingulum, as measured by MRI-based fibre tracking, with cognitive or affective measures will, therefore, depend greatly on how and where the cingulum is reconstructed. The present study provides a new framework for subdividing the cingulum, based both on its known connectivity and MRI-based properties

    Complementary patterns of direct amygdala and hippocampal projections to the macaque prefrontal cortex

    Get PDF
    The projections from the amygdala and hippocampus (including subiculum and presubiculum) to prefrontal cortex were compared using anterograde tracers injected into macaque monkeys (Macaca fascicularis, Macaca mulatta). Almost all prefrontal areas were found to receive some amygdala inputs. These connections, which predominantly arose from the intermediate and magnocellular basal nucleus, were particularly dense in parts of the medial and orbital prefrontal cortex. Contralateral inputs were not, however, observed. The hippocampal projections to prefrontal areas were far more restricted, being confined to the ipsilateral medial and orbital prefrontal cortex (within areas 11, 13, 14, 24a, 32, and 25). These hippocampal projections principally arose from the subiculum, with the fornix providing the sole route. Thus, while the lateral prefrontal cortex essentially receives only amygdala inputs, the orbital prefrontal cortex receives both amygdala and hippocampal inputs, though these typically target different areas. Only in medial prefrontal cortex do direct inputs from both structures terminate in common sites. But, even when convergence occurs within an area, the projections predominantly terminate in different lamina (hippocampal inputs to layer III and amygdala inputs to layers I, II, and VI). The resulting segregation of prefrontal inputs could enable the parallel processing of different information types in prefrontal cortex

    The anterior thalamic nuclei: core components of a tripartite episodic memory system

    Get PDF
    Standard models of episodic memory focus on hippocampalā€“parahippocampal interactions, with the neocortex supplying sensory information and providing a final repository of mnemonic representations. However, recent advances have shown that other regions make distinct and equally critical contributions to memory. In particular, there is growing evidence that the anterior thalamic nuclei have a number of key cognitive functions that support episodic memory. In this article, we describe these findings and argue for a core, tripartite memory system, comprising a ā€˜temporal lobeā€™ stream (centred on the hippocampus) and a ā€˜medial diencephalicā€™ stream (centred on the anterior thalamic nuclei) that together act on shared cortical areas. We demonstrate how these distributed brain regions form complementary and necessary partnerships in episodic memory formation
    • ā€¦
    corecore