286 research outputs found

    Magnetized black holes and black rings in the higher dimensional dilaton gravity

    Full text link
    In this paper we consider magnetized black holes and black rings in the higher dimensional dilaton gravity. Our study is based on exact solutions generated by applying a Harrison transformation to known asymptotically flat black hole and black ring solutions in higher dimensional spacetimes. The explicit solutions include the magnetized version of the higher dimensional Schwarzschild-Tangherlini black holes, Myers-Perry black holes and five dimensional (dipole) black rings. The basic physical quantities of the magnetized objects are calculated. We also discuss some properties of the solutions and their thermodynamics. The ultrarelativistic limits of the magnetized solutions are briefly discussed and an explicit example is given for the DD-dimensional magnetized Schwarzschild-Tangherlini black holes.Comment: LaTeX, 23 pages; v2 references and comments added, some typos corrected;v3 minor change

    Not so crystal clear: the structure of the human telomere G-quadruplex in solution differs from that present in a crystal

    Get PDF
    The structure of human telomere DNA is of intense interest because of its role in the biology of both cancer and aging. The sequence [5′-AGGG(TTAGGG)(3)] has been used as a model for telomere DNA in both NMR and X-ray crystallographic studies, the results of which show dramatically different structures. In Na(+) solution, NMR revealed an antiparallel G-quadruplex structure that featured both diagonal and lateral TTA loops. Crystallographic studies in the presence of K(+) revealed a flattened, propeller-shaped structure featuring a parallel-stranded G-quadruplex with symmetrical external TTA loops. We report the results of biophysical experiments in solution and computational studies that are inconsistent with the reported crystal structure, indicating that a different structure exists in K(+) solutions. Sedimentation coefficients were determined experimentally in both Na(+) and K(+) solutions and were compared with values calculated using bead models for the reported NMR and crystal structures. Although the solution NMR structure accurately predicted the observed S-value in Na(+) solution, the crystal structure predicted an S-value that differed dramatically from that experimentally observed in K(+) solution. The environments of loop adenines were probed by quantitative fluorescence studies using strategic and systematic single-substitutions of 2-aminopurine for adenine bases. Both fluorescence intensity and quenching experiments in K(+) yielded results at odds with quantitative predictions from the reported crystal structure. Circular dichroism and fluorescence quenching studies in the presence of the crowding agent polyethylene glycol showed dramatic changes in the quadruplex structure in K(+) solutions, but not in Na(+) solutions, suggesting that the crystal environment may have selected for a particular conformational form. Molecular dynamics simulations were performed to yield model structures for the K(+) quadruplex form that are consistent with our biophysical results and with previously reported chemical modification studies. These models suggest that the biologically relevant structure of the human telomere quadruplex in K(+) solution is not the one determined in the published crystalline state

    Discovery of novel triple helical DNA intercalators by an integrated virtual and actual screening platform

    Get PDF
    Virtual Screening is an increasingly attractive way to discover new small molecules with potential medicinal value. We introduce a novel strategy that integrates use of the molecular docking software Surflex with experimental validation by the method of competition dialysis. This integrated approach was used to identify ligands that selectively bind to the triplex DNA poly(dA)-[poly(dT)]2. A library containing ∼2 million ligands was virtually screened to identify compounds with chemical and structural similarity to a known triplex intercalator, the napthylquinoline MHQ-12. Further molecular docking studies using compounds with high structural similarity resulted in two compounds that were then demonstrated by competition dialysis to have a superior affinity and selectivity for the triplex nucleic acid than MHQ-12. One of the compounds has a different chemical backbone than MHQ-12, which demonstrates the ability of this strategy to ‘scaffold hop’ and to identify small molecules with novel binding properties. Biophysical characterization of these compounds by circular dichroism and thermal denaturation studies confirmed their binding mode and selectivity. These studies provide a proof-of-principle for our integrated screening strategy, and suggest that this platform may be extended to discover new compounds that target therapeutically relevant nucleic acid morphologies

    Visual Experiences during Paralysis

    Get PDF
    Rationale: Paralyzed human volunteers (n = 6) participated in several studies the primary one of which required full neuromuscular paralysis while awake. After the primary experiment, while still paralyzed and awake, subjects undertook studies of humor and of attempted eye-movement. The attempted eye-movements tested a central, intentional component to one’s internal visual model and are the subject of this report. Methods: Subjects reclined in a supportive chair and were ventilated after paralysis (cisatracurium, 20 mg intravenously). In illumination, subjects were requested to focus alternately on the faces of investigators standing on the left and the right within peripheral vision. In darkness, subjects were instructed to look away from a point source of light. Subjects were to report their experiences after reversal of paralysis. Results: During attempted eye-movement in illumination, one subject had an illusion of environmental movement but four subjects perceived faces as clearly as if they were in central vision. In darkness, four subjects reported movement of the target light in the direction of attempted eye-movements and three could control the movement of the light at will. Conclusion: The hypothesis that internal visual models receive intended ocular-movement-information directly from oculomotor centers is strengthened by this evidence

    Visual Experiences during Paralysis

    Get PDF
    Rationale: Paralyzed human volunteers (n = 6) participated in several studies the primary one of which required full neuromuscular paralysis while awake. After the primary experiment, while still paralyzed and awake, subjects undertook studies of humor and of attempted eye-movement. The attempted eye-movements tested a central, intentional component to one’s internal visual model and are the subject of this report. Methods: Subjects reclined in a supportive chair and were ventilated after paralysis (cisatracurium, 20 mg intravenously). In illumination, subjects were requested to focus alternately on the faces of investigators standing on the left and the right within peripheral vision. In darkness, subjects were instructed to look away from a point source of light. Subjects were to report their experiences after reversal of paralysis. Results: During attempted eye-movement in illumination, one subject had an illusion of environmental movement but four subjects perceived faces as clearly as if they were in central vision. In darkness, four subjects reported movement of the target light in the direction of attempted eye-movements and three could control the movement of the light at will. Conclusion: The hypothesis that internal visual models receive intended ocular-movement-information directly from oculomotor centers is strengthened by this evidence

    Моделирование формирования структуры металломатричных композитов в процессе синтеза с оценкой эффективных свойств

    Get PDF
    Работа посвящена моделированию процесса кристаллизации композита с металлической матрицей и твердыми включениями с учетом условий синтеза (давление, скорость охлаждения), моделированию процесса формирования переходной зоны между частицами и матрицей и расчету эффективных свойств получаемых композитов.The work is devoted to modeling the crystallization process of metal matrix composite with solid inclusions, taking into account the synthesis conditions (pressure, cooling rate), to modeling the formation of the transition zone between particles and matrix, and calculating the effective properties of the resulting composites

    Using network theory to identify the causes of disease outbreaks of unknown origin.

    Get PDF
    The identification of undiagnosed disease outbreaks is critical for mobilizing efforts to prevent widespread transmission of novel virulent pathogens. Recent developments in online surveillance systems allow for the rapid communication of the earliest reports of emerging infectious diseases and tracking of their spread. The efficacy of these programs, however, is inhibited by the anecdotal nature of informal reporting and uncertainty of pathogen identity in the early stages of emergence. We developed theory to connect disease outbreaks of known aetiology in a network using an array of properties including symptoms, seasonality and case-fatality ratio. We tested the method with 125 reports of outbreaks of 10 known infectious diseases causing encephalitis in South Asia, and showed that different diseases frequently form distinct clusters within the networks. The approach correctly identified unknown disease outbreaks with an average sensitivity of 76 per cent and specificity of 88 per cent. Outbreaks of some diseases, such as Nipah virus encephalitis, were well identified (sensitivity = 100%, positive predictive values = 80%), whereas others (e.g. Chandipura encephalitis) were more difficult to distinguish. These results suggest that unknown outbreaks in resource-poor settings could be evaluated in real time, potentially leading to more rapid responses and reducing the risk of an outbreak becoming a pandemic

    Decoding the Molecular Universe -- Workshop Report

    Full text link
    On August 9-10, 2023, a workshop was convened at the Pacific Northwest National Laboratory (PNNL) in Richland, WA that brought together a group of internationally recognized experts in metabolomics, natural products discovery, chemical ecology, chemical and biological threat assessment, cheminformatics, computational chemistry, cloud computing, artificial intelligence, and novel technology development. These experts were invited to assess the value and feasibility of a grand-scale project to create new technologies that would allow the identification and quantification of all small molecules, or to decode the molecular universe. The Decoding the Molecular Universe project would extend and complement the success of the Human Genome Project by developing new capabilities and technologies to measure small molecules (defined as non-protein, non-polymer molecules less than 1500 Daltons) of any origin and generated in biological systems or produced abiotically. Workshop attendees 1) explored what new understanding of biological and environmental systems could be revealed through the lens of small molecules; 2) characterized the similarities in current needs and technical challenges between each science or mission area for unambiguous and comprehensive determination of the composition and quantities of small molecules of any sample; 3) determined the extent to which technologies or methods currently exist for unambiguously and comprehensively determining the small molecule composition of any sample and in a reasonable time; and 4) identified the attributes of the ideal technology or approach for universal small molecule measurement and identification. The workshop concluded with a discussion of how a project of this scale could be undertaken, possible thrusts for the project, early proof-of-principle applications, and similar efforts upon which the project could be modeled
    corecore