34 research outputs found

    Electric toothbrush application is a reliable and valid test for differentiating temporomandibular disorders pain patients from controls

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Current methods for identifying patients with pain hypersensitivity are sufficiently complex to limit their widespread application in clinical settings. We assessed the reliability and validity of a simple multi-modal vibrotactile stimulus, applied using an electric toothbrush, to evaluate its potential as a screening tool for central sensitization.</p> <p>Methods</p> <p>Fourteen female temporomandibular disorders (TMD) subjects with myofascial pain (RDC/TMD Ia or Ib) and arthralgia (RDC/TMD IIIa) were compared to 13 pain-free controls of matched age and gender. Vibrotactile stimulus was performed with an electric toothbrush, applied with 1 pound pressure for 30 seconds in four locations: over the lateral pole of the temporomandibular joint, masseter, temporalis, and mid-ventral surface of forearm. Pain intensity (0–10) was recorded following the stimulus at 0, 15, 30, and 60 seconds. Test-retest reliability was assessed with measurements from 8 participants, taken 2–12 hours apart. Case versus control differentiation involved comparison of area under the curve (AUC). A receiver operating characteristic (ROC) curve was used to determine cutoff AUC scores for maximum sensitivity and specificity for this multi-modal vibrotactile stimulus.</p> <p>Results</p> <p>Test-retest reliability resulted in an ICC of 0.87 for all 4 pooled sites. ROC-determined AUC cutoff scores resulted in a sensitivity of 57% and specificity of 92% for all 4 pooled sites.</p> <p>Conclusion</p> <p>The electric toothbrush stimulus had excellent test-retest reliability. Validity of the scores was demonstrated with modest sensitivity and good specificity for differentiating TMD pain patients from controls, which are acceptable properties for a screening test.</p

    Synthetic Nanoparticles for Vaccines and Immunotherapy

    Get PDF
    The immune system plays a critical role in our health. No other component of human physiology plays a decisive role in as diverse an array of maladies, from deadly diseases with which we are all familiar to equally terrible esoteric conditions: HIV, malaria, pneumococcal and influenza infections; cancer; atherosclerosis; autoimmune diseases such as lupus, diabetes, and multiple sclerosis. The importance of understanding the function of the immune system and learning how to modulate immunity to protect against or treat disease thus cannot be overstated. Fortunately, we are entering an exciting era where the science of immunology is defining pathways for the rational manipulation of the immune system at the cellular and molecular level, and this understanding is leading to dramatic advances in the clinic that are transforming the future of medicine.1,2 These initial advances are being made primarily through biologic drugs– recombinant proteins (especially antibodies) or patient-derived cell therapies– but exciting data from preclinical studies suggest that a marriage of approaches based in biotechnology with the materials science and chemistry of nanomaterials, especially nanoparticles, could enable more effective and safer immune engineering strategies. This review will examine these nanoparticle-based strategies to immune modulation in detail, and discuss the promise and outstanding challenges facing the field of immune engineering from a chemical biology/materials engineering perspectiveNational Institutes of Health (U.S.) (Grants AI111860, CA174795, CA172164, AI091693, and AI095109)United States. Department of Defense (W911NF-13-D-0001 and Awards W911NF-07-D-0004

    Large-Scale Gene-Centric Meta-Analysis across 39 Studies Identifies Type 2 Diabetes Loci

    Get PDF
    To identify genetic factors contributing to type 2 diabetes (T2D), we performed large-scale meta-analyses by using a custom similar to 50,000 SNP genotyping array (the ITMAT-Broad-CARe array) with similar to 2000 candidate genes in 39 multiethnic population-based studies, case-control studies, and clinical trials totaling 17,418 cases and 70,298 controls. First, meta-analysis of 25 studies comprising 14,073 cases and 57,489 controls of European descent confirmed eight established T2D loci at genome-wide significance. In silico follow-up analysis of putative association signals found in independent genome-wide association studies (including 8,130 cases and 38,987 controls) performed by the DIAGRAM consortium identified a T2D locus at genome-wide significance (GATAD2A/CILP2/PBX4; p = 5.7 x 10(-9)) and two loci exceeding study-wide significance (SREBF1, and TH/INS; p <2.4 x 10(-6)). Second, meta-analyses of 1,986 cases and 7,695 controls from eight African-American studies identified study-wide-significant (p = 2.4 x 10(-7)) variants in HMGA2 and replicated variants in TCF7L2 (p = 5.1 x 10(-15)). Third, conditional analysis revealed multiple known and novel independent signals within five T2D-associated genes in samples of European ancestry and within HMGA2 in African-American samples. Fourth, a multiethnic meta-analysis of all 39 studies identified T2D-associated variants in BCL2 (p = 2.1 x 10(-8)). Finally, a composite genetic score of SNPs from new and established T2D signals was significantly associated with increased risk of diabetes in African-American, Hispanic, and Asian populations. In summary, large-scale meta-analysis involving a dense gene-centric approach has uncovered additional loci and variants that contribute to T2D risk and suggests substantial overlap of T2D association signals across multiple ethnic groups

    The Effect of Catastrophizing and Depression on Chronic Pain--a Prospective Cohort Study of Temporomandibular Muscle and Joint Pain Disorders

    No full text
    Although most cases of temporomandibular muscle and joint disorders (TMJD) are mild and self-limiting, about 10% of TMJD patients develop severe disorders associated with chronic pain and disability. It has been suggested that depression and catastrophizing contributes to TMJD chronicity. This article assesses the effects of catastrophizing and depression on clinically significant TMJD pain (Graded Chronic Pain Scale [GCPS] II–IV). Four hundred eighty participants, recruited from the Minneapolis/St. Paul area through media advertisements and local dentists, received examinations and completed the GCPS at baseline and at 18-month follow-up. In a multivariable analysis including gender, age, and worst pain intensity, baseline catastrophizing (β 3.79, P\u3c0.0001) and pain intensity at baseline (β 0.39, P\u3c0.0001) were positively associated with characteristic of pain intensity at the 18th month. Disability at the 18-month follow-up was positively related to catastrophizing (β 0.38, P\u3c0.0001) and depression (β 0.17, P=0.02). In addition, in the multivariable analysis adjusted by the same covariates previously described, the onset of clinically significant pain (GCPS II–IV) at the 18-month follow-up was associated with catastrophizing (odds ratio [OR] 1.72, P=0.02). Progression of clinically significant pain was related to catastrophizing (OR 2.16, P\u3c0.0001) and widespread pain at baseline (OR 1.78, P=0.048). Results indicate that catastrophizing and depression contribute to the progression of chronic TMJD pain and disability, and therefore should be considered as important factors when evaluating and developing treatment plans for patients with TMJD

    CCAT2, a novel long non-coding RNA in breast cancer: expression study and clinical correlations

    Get PDF
    The clinical outcome of BC patients receiving the same treatment is known to vary considerably and thus, there is a compelling need to identify novel biomarkers that can select the patients that would benefit most from a given therapy and can predict the clinical outcome. The aim of this study was to determine the prognostic value of CCAT2, a novel long ncRNA recently characterized by our group and overlapping SNP rs6983267, in BC patients. We first evaluated by RT-qPCR and ISH the expression of CCAT2 in normal breast tissue and BC tissue and further analyzed CCAT2 expression in an independent set of 997 primary BC with regard to clinical, histological, pathological and other biological factors. Also, we explored the possibility of CCAT2 adding to the prognostic value of multivariate models that already included the traditional prognostic factors. Finally, we identified in in vitro models the impact of CCAT2 expression and SNP rs6983267 genotype on cell migration and chemoresistance. Our results revealed that although overexpressed in BCs in two out of three sets of patients, and having the highest expression in lymph node negative (LNN) disease, CCAT2 expression levels are informative solely for a subgroup of BC patients, namely for patients with LNP disease that have received adjuvant CMF chemotherapy. For this subgroup high levels of CCAT2 suggest the patients will not benefit from CMF containing adjuvant chemotherapy (shorter MFS and OS). Additionally, we found that CCAT2 upregulates cell migration and downregulates chemosensitivity to 5'FU in a rs6983267-independent manner
    corecore