4 research outputs found

    Combating antimicrobial resistance: the silent war

    Get PDF
    Once hailed as miraculous solutions, antibiotics no longer hold that status. The excessive use of antibiotics across human healthcare, agriculture, and animal husbandry has given rise to a broad array of multidrug-resistant (MDR) pathogens, posing formidable treatment challenges. Antimicrobial resistance (AMR) has evolved into a pressing global health crisis, linked to elevated mortality rates in the modern medical era. Additionally, the absence of effective antibiotics introduces substantial risks to medical and surgical procedures. The dwindling interest of pharmaceutical industries in developing new antibiotics against MDR pathogens has aggravated the scarcity issue, resulting in an exceedingly limited pipeline of new antibiotics. Given these circumstances, the imperative to devise novel strategies to combat perilous MDR pathogens has become paramount. Contemporary research has unveiled several promising avenues for addressing this challenge. The article provides a comprehensive overview of these innovative therapeutic approaches, highlighting their mechanisms of action, benefits, and drawbacks

    Palmitic Acid Impedes Extravillous Trophoblast Activity by Increasing MRP1 Expression and Function

    No full text
    Normal function of placental extravillous trophoblasts (EVTs), which are responsible for uteroplacental vascular remodeling, is critical for adequate delivery of oxygen and nutrients to the developing fetus and normal fetal programming. Proliferation and invasion of spiral arteries by EVTs depends upon adequate levels of folate. Multidrug resistance-associated protein 1 (MRP1), which is an efflux transporter, is known to remove folate from these cells. We hypothesized that palmitic acid increases MRP1-mediated folate removal from EVTs, thereby interfering with EVTs’ role in early placental vascular remodeling. HTR-8/SVneo and Swan-71 cells, first trimester human EVTs, were grown in the absence or presence of 0.5 mM and 0.7 mM palmitic acid, respectively, for 72 h. Palmitic acid increased ABCC1 gene expression and MRP1 protein expression in both cell lines. The rate of folate efflux from the cells into the media increased with a decrease in migration and invasion functions in the cultured cells. Treatment with N-acetylcysteine (NAC) prevented the palmitic acid-mediated upregulation of MRP1 and restored invasion and migration in the EVTs. Finally, in an ABCC1 knockout subline of Swan-71 cells, there was a significant increase in invasion and migration functions. The novel finding in this study that palmitic acid increases MRP1-mediated folate efflux provides a missing link that helps to explain how maternal consumption of saturated fatty acids compromises the in utero environment

    The Battlefield of Chemotherapy in Pediatric Cancers

    No full text
    The survival rate for pediatric cancers has remarkably improved in recent years. Conventional chemotherapy plays a crucial role in treating pediatric cancers, especially in low- and middle-income countries where access to advanced treatments may be limited. The Food and Drug Administration (FDA) approved chemotherapy drugs that can be used in children have expanded, but patients still face numerous side effects from the treatment. In addition, multidrug resistance (MDR) continues to pose a major challenge in improving the survival rates for a significant number of patients. This review focuses on the severe side effects of pediatric chemotherapy, including doxorubicin-induced cardiotoxicity (DIC) and vincristine-induced peripheral neuropathy (VIPN). We also delve into the mechanisms of MDR in chemotherapy to the improve survival and reduce the toxicity of treatment. Additionally, the review focuses on various drug transporters found in common types of pediatric tumors, which could offer different therapeutic options

    Understanding and targeting resistance mechanisms in cancer

    No full text
    Abstract Resistance to cancer therapies has been a commonly observed phenomenon in clinical practice, which is one of the major causes of treatment failure and poor patient survival. The reduced responsiveness of cancer cells is a multifaceted phenomenon that can arise from genetic, epigenetic, and microenvironmental factors. Various mechanisms have been discovered and extensively studied, including drug inactivation, reduced intracellular drug accumulation by reduced uptake or increased efflux, drug target alteration, activation of compensatory pathways for cell survival, regulation of DNA repair and cell death, tumor plasticity, and the regulation from tumor microenvironments (TMEs). To overcome cancer resistance, a variety of strategies have been proposed, which are designed to enhance the effectiveness of cancer treatment or reduce drug resistance. These include identifying biomarkers that can predict drug response and resistance, identifying new targets, developing new targeted drugs, combination therapies targeting multiple signaling pathways, and modulating the TME. The present article focuses on the different mechanisms of drug resistance in cancer and the corresponding tackling approaches with recent updates. Perspectives on polytherapy targeting multiple resistance mechanisms, novel nanoparticle delivery systems, and advanced drug design tools for overcoming resistance are also reviewed
    corecore