3,948 research outputs found

    AI-predicted protein deformation encodes energy landscape perturbation

    Full text link
    AI algorithms proved excellent predictors of protein structure, but whether their exceptional accuracy is merely due to megascale regression or these algorithms learn the underlying physics remains an open question. Here, we perform a stringent test for the existence of such learning in the Alphafold2 (AF) algorithm: We use AF to predict the subtle structural deformation induced by single mutations, quantified by strain, and compare with experimental datasets of corresponding perturbations in folding free energy ΔΔG\Delta\Delta G. Unexpectedly, we find that physical strain alone -- without any additional data or computation -- correlates almost as well with ΔΔG\Delta \Delta G as state-of-the-art energy-based and machine-learning predictors.This indicates that the AF-predicted structures alone encode fine details about the energy landscape. In particular, the structures encode significant information on stability, enough to estimate (de-)stabilizing effects of mutations, thus paving the way for the development of novel, structure-based stability predictors for protein design and evolution

    Do penile cutting practices other than full circumcision protect against HIV?

    Get PDF
    Introduction: Male circumcision provides a high level of protection against sexually acquired HIV infection and is a key element of prevention in countries with extensive heterosexual transmission. In some countries, penile cutting practices other than full circumcision are a part of the cultural landscape, raising the question of their ability to modify the risk of HIV. One such country is Papua New Guinea. Methods: We reviewed information on prevalence of HIV, sexually transmitted infection (STI), and penile cutting practices, and their possible relationships. Results: Based on antenatal testing, the prevalence of HIV infection among pregnant women in Papua New Guinea is around 0.9%. Surveys of STI in pregnant women have found prevalences of chlamydia, gonorrhoea and trichomonas in the range 15-25%, and infectious syphilis at 2-3%. In three studies of penile cutting around half the men have some form of procedure; 10% had full foreskin removal with a further 30-40% having dorsal slits, with lateral retraction of the foreskin and exposure of the glans. There is evidence of an inverse geographic correlation between HIV prevalence and partial cutting practice. Conclusions: Levels of curable STIs in Papua New Guinea are very high by international levels, while HIV infection is at moderate levels compared to the countries in which male circumcision is now being promoted. The role of partial penile cutting procedures deserves further examination to see whether it provides protection, and if so what this tells us of the biology of HIV transmission

    Insertion of an uncharged polypeptide into the mitochondrial inner membrane does not require a trans-bilayer electrochemical potential: effects of positive charges

    Get PDF
    AbstractMitochondria with a ruptured outer membrane exhibited impaired import into this membrane of an outer membrane fusion protein containing the signal-anchor sequence of Mas70p. However, the Mas70p signal-anchor efficiently targeted and inserted the protein directly into exposed regions of the inner membrane. Import into the inner membrane was dependent on δψ and this dependence was due to the presence of the positively-charged amino acids located at positions 2, 7, and 9 of the signal-anchor. In contrast to wild-type signal-anchor, mutants lacking the positively-charged residues mediated import into the inner membrane in both the presence and absence of δψ. The results suggest two conclusions: (1) δψ-dependent import of the signal-anchor sequence was due exclusively to an effect of δψ on the positively-charged domain of the signal-anchor, rather than to an effect of δψ on a property of the inner membrane import machinery; (2) in the absence of δψ, the positively-charged domain of the signal-anchor prevented the otherwise import-competent signal-anchor from inserting into the membrane. This suggests that the positively-charged domain leads import across the inner membrane, and that dqi is required to vectorially clear this domain in order to allow the distal region of the signal-anchor to enter the translocation pathway. The implications of these findings on the mechanism of import into the mitochondrial inner membrane and matrix are discussed

    Differential gene expression in multiple neurological, inflammatory and connective tissue pathways in a spontaneous model of human small vessel stroke

    Get PDF
    Aims: Cerebral small vessel disease (SVD) causes a fifth of all strokes plus diffuse brain damage leading to cognitive decline, physical disabilities and dementia. The aetiology and pathogenesis of SVD are unknown, but largely attributed to hypertension or microatheroma. Methods: We used the spontaneously hypertensive stroke-prone rat (SHRSP), the closest spontaneous experimental model of human SVD, and age-matched control rats kept under identical, non-salt-loaded conditions, to perform a blinded analysis of mRNA microarray, qRT-PCRand pathway analysis in two brain regions (frontal and midcoronal) commonly affected by SVD in the SHRSP at age five, 16 and 21 weeks. Results: We found gene expression abnormalities, with fold changes ranging from 2.5 to 59 for the 10 most differentially expressed genes, related to endothelial tight junctions (reduced), nitric oxide bioavailability (reduced), myelination (impaired), glial and microglial activity (increased), matrix proteins (impaired), vascular reactivity (impaired) and albumin (reduced), consistent with protein expression defects in the same rats. All were present at age 5 weeks thus pre-dating blood pressure elevation. ‘Neurological’ and ‘inflammatory’ pathways were more affected than ‘vascular’ functional pathways. Conclusions: This set of defects, although individually modest, when acting in combination could explain the SHRSP's susceptibility to microvascular and brain injury, compared with control rats. Similar combined, individually modest, but multiple neurovascular unit defects, could explain susceptibility to spontaneous human SVD

    HLA gene expression is altered in whole blood and placenta from women who later developed preeclampsia

    Get PDF
    Preeclampsia is a multi-system disease that significantly contributes to maternal and fetal morbidity and mortality. In this study, we used a non-biased microarray approach to identify dysregulated genes in maternal whole blood samples which may be associated with the development of preeclampsia. Whole blood samples were obtained at 28 weeks of gestation from 5 women who later developed preeclampsia (cases) and 10 matched women with normotensive pregnancies (controls). Placenta samples were obtained from an independent cohort of 19 women with preeclampsia matched with 19 women with normotensive pregnancies. We studied gene expression profiles using Illumina microarray in blood and validated changes in gene expression in whole blood and placenta tissue by qPCR. We found a transcriptional profile differentiating cases from controls; 236 genes were significantly dysregulated in blood from women who developed preeclampsia. Functional annotation of microarray results indicated that most of the genes found to be dysregulated were involved in inflammatory pathways. Whilst general trends were preserved, only HLA-A was validated in whole blood samples from cases using qPCR (2.30 ± 0.9 fold change) whereas in placental tissue HLA-DRB1 expression was found to be significantly increased in samples from women with preeclampsia (5.88 ± 2.24 fold change). We have identified that HLA-A is up-regulated in the circulation of women who went on to develop preeclampsia. In placenta of women with preeclampsia we identified that HLA-DRB1 is up-regulated. Our data provide further evidence for involvement of the HLA gene family in the pathogenesis of preeclampsia

    AlphaFold2 can predict single-mutation effects on structure and phenotype

    Full text link
    AlphaFold2 (AF) is a promising tool, but is it accurate enough to predict single mutation effects? Here, we report that a measure for localized structural deformation between protein pairs differing by only 1-3 mutations is correlated across 4,645 experimental and AF-predicted structures. Furthermore, analysis of ∼\sim11,000 proteins shows that the local structural change correlates with various phenotypic changes. These findings suggest that AF can predict the magnitude of single-mutation effects in many proteins, and we propose a method to identify those proteins for which AF is most predictive

    Differential expression of microRNA-206 and its target genes in pre-eclampsia

    Get PDF
    Objectives: Pre-eclampsia is a multi-system disease that significantly contributes to maternal and fetal morbidity and mortality. In this study, we used a non-biased microarray approach to identify novel circulating miRNAs in maternal plasma that may be associated with pre-eclampsia. Methods: Plasma samples were obtained at 16 and 28 weeks of gestation from 18 women who later developed pre-eclampsia (cases) and 18 matched women with normotensive pregnancies (controls). We studied miRNA expression profiles in plasma and subsequently confirmed miRNA and target gene expression in placenta samples. Placental samples were obtained from an independent cohort of 19 women with pre-eclampsia matched with 19 women with normotensive pregnancies. Results: From the microarray, we identified 1 miRNA that was significantly differentially expressed between cases and controls at 16 weeks of gestation and 6 miRNAs that were significantly differentially expressed at 28 weeks. Following qPCR validation only one, miR-206, was found to be significantly increased in 28 week samples in women who later developed pre-eclampsia (1.4 fold change ± 0.2). The trend for increase in miR-206 expression was mirrored within placental tissue from women with pre-eclampsia. In parallel, IGF-1, a target gene of miR-206, was also found to be down-regulated (0.41 ± 0.04) in placental tissue from women with pre-eclampsia. miR-206 expression was also detectable in myometrium tissue and trophoblast cell lines. Conclusions: Our pilot study has identified miRNA-206 as a novel factor up-regulated in pre-eclampsia within the maternal circulation and in placental tissue

    Reducing in-stent restenosis therapeutic manipulation of miRNA in vascular remodeling and inflammation

    Get PDF
    Background: Drug-eluting stents reduce the incidence of in-stent restenosis, but they result in delayed arterial healing and are associated with a chronic inflammatory response and hypersensitivity reactions. Identifying novel interventions to enhance wound healing and reduce the inflammatory response may improve long-term clinical outcomes. Micro–ribonucleic acids (miRNAs) are noncoding small ribonucleic acids that play a prominent role in the initiation and resolution of inflammation after vascular injury.<p></p> Objectives: This study sought to identify miRNA regulation and function after implantation of bare-metal and drug-eluting stents.<p></p> Methods: Pig, mouse, and in vitro models were used to investigate the role of miRNA in in-stent restenosis.<p></p> Results: We documented a subset of inflammatory miRNAs activated after stenting in pigs, including the miR-21 stem loop miRNAs. Genetic ablation of the miR-21 stem loop attenuated neointimal formation in mice post-stenting. This occurred via enhanced levels of anti-inflammatory M2 macrophages coupled with an impaired sensitivity of smooth muscle cells to respond to vascular activation.<p></p> Conclusions: MiR-21 plays a prominent role in promoting vascular inflammation and remodeling after stent injury. MiRNA-mediated modulation of the inflammatory response post-stenting may have therapeutic potential to accelerate wound healing and enhance the clinical efficacy of stenting
    • …
    corecore