238 research outputs found

    Raptor is Phosphorylated by cdc2 during Mitosis

    Get PDF
    Background: The appropriate control of mitotic entry and exit is reliant on a series of interlocking signaling events that coordinately drive the biological processes required for accurate cell division. Overlaid onto these signals that promote orchestrated cell division are checkpoints that ensure appropriate mitotic spindle formation, a lack of DNA damage, kinetochore attachment, and that each daughter cell has the appropriate complement of DNA. We recently discovered that AMP-activated protein kinase (AMPK) modulates the G2/M phase of cell cycle progression in part through its suppression of mammalian target of rapamycin (mTOR) signaling. AMPK directly phosphorylates the critical mTOR binding partner raptor inhibiting mTORC1 (mTOR-raptor rapamycin sensitive mTOR kinase complex 1). As mTOR has been previously tied to mitotic control, we examined further how raptor may contribute to this process. Methodology/Principal Findings: We have discovered that raptor becomes highly phosphorylated in cells in mitosis. Utilizing tandem mass spectrometry, we identified a number of novel phosphorylation sites in raptor, and using phospho-specific antibodies demonstrated that raptor becomes phosphorylated on phospho-serine/threonine-proline sites in mitosis. A combination of site-directed mutagenesis in a tagged raptor cDNA and analysis with a series of new phospho-specific antibodies generated against different sites in raptor revealed that Serine 696 and Threonine 706 represent two key sites in raptor phosphorylated in mitosis. We demonstrate that the mitotic cyclin-dependent kinase cdc2/CDK1 is the kinase responsible for phosphorylating these sites, and its mitotic partner Cyclin B efficiently coimmunoprecipitates with raptor in mitotic cells. Conclusions/Significance: This study demonstrates that the key mTOR binding partner raptor is directly phosphorylated during mitosis by cdc2. This reinforces previous studies suggesting that mTOR activity is highly regulated and important for mitotic progression, and points to a direct modulation of the mTORC1 complex during mitosis

    The Role of the Transcription Factor SIM2 in Prostate Cancer

    Get PDF
    Background: Recent reports have suggested a possible involvement of Single-minded homolog 2 (SIM2) in human solid cancers, including prostate cancer. However, the exact role of SIM2 in cancer in general, and in prostate cancer in particular, remains largely unknown. This study was designed to elucidate the role of SIM2 in prostate cancer using a shRNA-based approach in the PC3 prostate cancer cell line. Methods: Lentiviral shRNAs were used to inhibit SIM2 gene and protein levels in PC3 cells. Quantitative RT-PCR and branched DNA were performed to evaluate transcript expression. SIM2 protein expression level was measured by western blot. Profiling of gene expression spanning the whole genome, as well as polar metabolomics of several major metabolic pathways was performed to identify major pathway dysregulations. Results: SIM2 gene and protein products were significantly downregulated by lenti-shRNA in PC3 cell line. This low expression of SIM2 affected gene expression profile, revealing significant changes in major signaling pathways, networks and functions. In addition, major metabolic pathways were affected. Conclusion: Taken together, our results suggest an involvement of SIM2 in key traits of prostate tumor cell biology an

    An Automated Method for the Analysis of Stable Isotope Labeling Data in Proteomics

    Get PDF
    An algorithm is presented for the generation of a reliable peptide component peak table from liquid chromatography-mass spectrometry (LC-MS) and subsequent quantitative analysis of stable isotope coded peptide samples. The method uses chemical noise filtering, charge state fitting, and deisotoping toward improved analysis of complex peptide samples. Overlapping peptide signals in mass spectra were deconvoluted by correlation with modeled peptide isotopic peak profiles. Isotopic peak profiles for peptides were generated in silico from a protein database producing reference model distributions. Doublets of heavy and light labeled peak clusters were identified and compared to provide differential quantification of pairs of stable isotope coded peptides. Algorithms were evaluated using peptides from digests of a single protein and a seven-protein mixture that had been differentially coded with stable isotope labeling agents and mixed in known ratios. The experimental results correlated well with known mixing ratios

    Identification of Immunoreactive Material in Mammoth Fossils

    Get PDF
    The fossil record represents a history of life on this planet. Attempts to obtain molecular information from this record by analysis of nucleic acids found within fossils of extreme age have been unsuccessful or called into question. However, previous studies have demonstrated the long-term persistence of peptides within fossils and have used antibodies to extant proteins to demonstrate antigenic material. In this study we address two questions: Do immunogenic/antigenic materials persist in fossils? and; Can fossil material be used to raise antibodies that will cross-react with extant proteins? We have used material extracted from a well-preserved 100,000-300,000-year-old mammoth skull to produce antisera. The specificity of the antisera was tested by ELISA, western blotting, and immunohistochemistry. It was demonstrated that antisera reacted specifically with the fossils and no the surrounding sediments. Reactivity of antisera with modern proteins and tissues was also demonstrated, as was the ability to detect evolutionary relationships via antibody-antigen interactions. Mass spectrometry demonstrated the response of amino acids and specific peptides within the fossil. Peptides were purified by anion-exchange chromatography and sequenced by tandem mass spectrometry. The collagen-derived peptides may have been the source of at least some of the immunologic reactivity, but the antisera identified molecules that were not observed by mass spectrometry, indicating that immunologic methods may have greater sensitivity. Although the presence of peptides and amino acids was demonstrated, the exact nature of the antigenic material was not fully clarified. This report demonstrated that antibodies may be used to obtain information from the fossil record

    Metabolomic Profiling from Formalin-Fixed, Paraffin-Embedded Tumor Tissue Using Targeted LC/MS/MS: Application in Sarcoma

    Get PDF
    The relatively new field of onco-metabolomics attempts to identify relationships between various cancer phenotypes and global metabolite content. Previous metabolomics studies utilized either nuclear magnetic resonance spectroscopy or gas chromatography/mass spectrometry, and analyzed metabolites present in urine and serum. However, direct metabolomic assessment of tumor tissues is important for determining altered metabolism in cancers. In this respect, the ability to obtain reliable data from archival specimens is desirable and has not been reported to date. In this feasibility study, we demonstrate the analysis of polar metabolites extracted directly from ten formalin-fixed, paraffin-embedded (FFPE) specimens, including five soft tissue sarcomas and five paired normal samples. Using targeted liquid chromatography-tandem mass spectrometry (LC/MS/MS) via selected reaction monitoring (SRM), we detect an average of 106 metabolites across the samples with excellent reproducibility and correlation between different sections of the same specimen. Unsupervised hierarchical clustering and principal components analysis reliably recovers a priori known tumor and normal tissue phenotypes, and supervised analysis identifies candidate metabolic markers supported by the literature. In addition, we find that diverse biochemical processes are well-represented in the list of detected metabolites. Our study supports the notion that reliable and broadly informative metabolomic data may be acquired from FFPE soft tissue sarcoma specimens, a finding that is likely to be extended to other malignancies

    A label-free quantification method by MS/MS TIC compared to SILAC and spectral counting in a proteomics screen

    Get PDF
    In order to assess the biological function of proteins and their modifications for understanding signaling mechanisms within cells as well as specific biomarkers to disease, it is important that quantitative information be obtained under different experimental conditions. Stable isotope labeling is a powerful method for accurately determining changes in the levels of proteins and PTMs; however, isotope labeling experiments suffer from limited dynamic range resulting in signal change ratios of less than ,20:1 using most commercial mass spectrometers. Label-free approaches to relative quantification in proteomics such as spectral counting have gained popularity since no additional chemistries are needed. Here, we show a label-free method for relative quantification based on the TIC from peptide MS/MS spectra collected from data-dependent runs can be used effectively as a quantitative measure and expands the dynamic range over isotope labeling experiments allowing for abundance differences up to ,60:1 in a screen for proteins that bind to phosphotyrosine residues. Methods for acquiring quantitative proteomics data are continually developing with very accurate stable isotope labeling (SIL) and label-free approaches. SIL provides chemically equivalent but isotopically different internal standards for each peptide/protein for direct comparison of mass spectral signal intensities that represent relative abundance. Common SIL strategies include protein level labeling strategies such as stable isotope labeling of amino acids in cell culture (SILAC) [1], a global method whereby all translated proteins have isotope labels metabolically incorporated at selected amino acid residues, and isotope-coded affinity tags (ICAT) [2], a technique that labels cysteine residues at the protein level. Peptide level labeling strategies include multiplexed isobaric tags for relative and absolute quantification (iTRAQ
    • …
    corecore