6,299 research outputs found

    A Candidate Low Emittance Lattice for LEP at its Highest Energies

    Get PDF
    Several low emittance lattices have been proposed for LEP at its highest energies in order to reduce the horizontal beam size and bring the beam-beam limit within reach. However, optics with high phase advance per cell tend to have strong tune dependence on amplitude that can reduce the dynamic aperture and the beam lifetime, possibly limiting the maximum beam energy or creating operational difficulties. Recently an optics with a phase advance of 17p/30 in the horizontal and p/2 in the vertical plane was developed. This optics has a significantly smaller detuning with amplitude. The results of experiments on this optics are compared with expectations and some details of the first operational experience with this lattice are presented. The potential performance at maximum energy is discussed

    On Estimation of Fully Entangled Fraction

    Full text link
    We study the fully entangled fraction (FEF) of arbitrary mixed states. New upper bounds of FEF are derived. These upper bounds make complements on the estimation of the value of FEF. For weakly mixed quantum states, an upper bound is shown to be very tight to the exact value of FEF.Comment: 8 pages, 2 figure

    Nonadditivity of Bipartite Distillable Entanglement follows from Conjecture on Bound Entangled Werner States

    Full text link
    Assuming the validity of a conjecture in quant-ph/9910026 and quant-ph/9910022 we show that the distillable entanglement for two bipartite states, each of which individually has zero distillable entanglement, can be nonzero. We show that this also implies that the distillable entanglement is not a convex function. Our example consists of the tensor product of a bound entangled state based on an unextendible product basis with a Werner state which lies in the class of conjectured undistillable states.Comment: 4 pages RevTex, 1 figure, to appear in Phys. Rev. Lett. Title changed and small paragraph adde

    Photon-photon correlations and entanglement in doped photonic crystals

    Full text link
    We consider a photonic crystal (PC) doped with four-level atoms whose intermediate transition is coupled near-resonantly with a photonic band-gap edge. We show that two photons, each coupled to a different atomic transition in such atoms, can manifest strong phase or amplitude correlations: One photon can induce a large phase shift on the other photon or trigger its absorption and thus operate as an ultrasensitive nonlinear photon-switch. These features allow the creation of entangled two-photon states and have unique advantages over previously considered media: (i) no control lasers are needed; (ii) the system parameters can be chosen to cause full two-photon entanglement via absorption; (iii) a number of PCs can be combined in a network.Comment: Modified, expanded text; added reference

    Non-detection of previously reported transits of HD 97658b with MOST photometry

    Get PDF
    The radial velocity-discovered exoplanet HD 97658b was recently announced to transit, with a derived planetary radius of 2.93 \pm 0.28 R_{Earth}. As a transiting super-Earth orbiting a bright star, this planet would make an attractive candidate for additional observations, including studies of its atmospheric properties. We present and analyze follow-up photometric observations of the HD 97658 system acquired with the MOST space telescope. Our results show no transit with the depth and ephemeris reported in the announcement paper. For the same ephemeris, we rule out transits for a planet with radius larger than 2.09 R_{Earth}, corresponding to the reported 3\sigma lower limit. We also report new radial velocity measurements which continue to support the existence of an exoplanet with a period of 9.5 days, and obtain improved orbital parameters.Comment: 16 pages, 4 figures; 1 Table; accepted for publication in ApJL, includes changes made in response to the referee repor

    Validation of frequency and mode extraction calculations from time-domain simulations of accelerator cavities

    Full text link
    The recently developed frequency extraction algorithm [G.R. Werner and J.R. Cary, J. Comp. Phys. 227, 5200 (2008)] that enables a simple FDTD algorithm to be transformed into an efficient eigenmode solver is applied to a realistic accelerator cavity modeled with embedded boundaries and Richardson extrapolation. Previously, the frequency extraction method was shown to be capable of distinguishing M degenerate modes by running M different simulations and to permit mode extraction with minimal post-processing effort that only requires solving a small eigenvalue problem. Realistic calculations for an accelerator cavity are presented in this work to establish the validity of the method for realistic modeling scenarios and to illustrate the complexities of the computational validation process. The method is found to be able to extract the frequencies with error that is less than a part in 10^5. The corrected experimental and computed values differ by about one parts in 10^$, which is accounted for (in largest part) by machining errors. The extraction of frequencies and modes from accelerator cavities provides engineers and physicists an understanding of potential cavity performance as it depends on shape without incurring manufacture and measurement costs

    Far Infrared Prperties of M Dwarfs

    Full text link
    We report the mid- and far-infrared properties of nearby M dwarfs. Spitzer/MIPS measurements were obtained for a sample of 62 stars at 24 um, with subsamples of 41 and 20 stars observed at 70 um and 160 um respectively. We compare the results with current models of M star photospheres and look for indications of circumstellar dust in the form of significant deviations of K-[24 um] colors and 70 um / 24 um flux ratios from the average M star values. At 24 um, all 62 of the targets were detected; 70 um detections were achieved for 20 targets in the subsample observed; and no detections were seen in the 160 um subsample. No clear far-infrared excesses were detected in our sample. The average far infrared excess relative to the photospheric emission of the M stars is at least four times smaller than the similar average for a sample of solar-type stars. However, this limit allows the average fractional infrared luminosity in the M-star sample to be similar to that for more massive stars. We have also set low limits for the maximum mass of dust possible around our stars.Comment: 28 pages, 4 figures, to be published in The Astrophysical Journa

    Prospects for photon blockade in four level systems in the N configuration with more than one atom

    Get PDF
    We show that for appropriate choices of parameters it is possible to achieve photon blockade in idealised one, two and three atom systems. We also include realistic parameter ranges for rubidium as the atomic species. Our results circumvent the doubts cast by recent discussion in the literature (Grangier et al Phys. Rev Lett. 81, 2833 (1998), Imamoglu et al Phys. Rev. Lett. 81, 2836 (1998)) on the possibility of photon blockade in multi-atom systems.Comment: 8 page, revtex, 7 figures, gif. Submitted to Journal of Optics B: Quantum and Semiclassical Optic
    corecore