287 research outputs found
Voltage-dependent anion channel (VDAC) as mitochondrial governator—Thinking outside the box
Despite a detailed understanding of their metabolism, mitochondria often behave anomalously. In particular, global suppression of mitochondrial metabolism and metabolite exchange occurs in apoptosis, ischemia and anoxia, cytopathic hypoxia of sepsis and multiple organ failure, alcoholic liver disease, aerobic glycolysis in cancer cells (Warburg effect) and unstimulated pancreatic beta cells. Here, we propose that closure of voltage-dependent anion channels (VDAC) in the mitochondrial outer membrane accounts for global mitochondrial suppression. In anoxia, cytopathic hypoxia and ethanol treatment, reactive oxygen and nitrogen species, cytokines, kinase cascades and increased NADH act to inhibit VDAC conductance and promote selective oxidation of membrane-permeable respiratory substrates like short chain fatty acids and acetaldehyde. In cancer cells, highly expressed hexokinase binds to and inhibits VDAC to suppress mitochondrial function while stimulating glycolysis, but an escape mechanism intervenes when glucose-6-phosphate accumulates and dissociates hexokinase from VDAC. Similarly, glucokinase binds mitochondria of insulin-secreting beta cells, possibly blocking VDAC and suppressing mitochondrial function. We propose that glucose metabolism leads to glucose-6-phosphate-dependent unbinding of glucokinase, relief of VDAC inhibition, release of ATP from mitochondria and ATP-dependent insulin release. In support of the overall proposal, ethanol treatment of isolated rat hepatocytes inhibited mitochondrial respiration and accessibility to adenylate kinase in the intermembrane space, effects that were overcome by digitonin permeabilization of the outer membrane. Overall, these considerations suggest that VDAC is a dynamic regulator, or governator, of global mitochondrial function both in health and disease
Dying a Thousand Deaths: Redundant Pathways From Different Organelles to Apoptosis and Necrosis
Cell death is an essential event in normal life and development, as well as in the pathophysiological processes that lead to disease. Although the literature on cell death has grown enormously in size and complexity, a pattern has emerged that each of several distinct organelles (plasma membrane, mitochondrion, nucleus, endoplasmic reticulum, lysosome) gives rise to signals that induce cell death. Most often these signals converge on mitochondria to initiate a common pathway to either caspase-dependent apoptosis or ATP depletion-dependent necrosis. This brief overview emphasizes the multiple and often redundant pathways between different organelles that lead ultimately to a cell's demise
C-Jun N-terminal kinase 2 promotes liver injury via the mitochondrial permeability transition after hemorrhage and resuscitation
Hemorrhagic shock leads to hepatic hypoperfusion and activation of mitogen-activated stress kinases (MAPK) like c-Jun N-terminal kinase (JNK) 1 and 2. Our aim was to determine whether mitochondrial dysfunction leading to hepatic necrosis and apoptosis after hemorrhage/resuscitation (H/R) was dependent on JNK2. Under pentobarbital anesthesia, wildtype (WT) and JNK2 deficient (KO) mice were hemorrhaged to 30 mm Hg for 3 h and then resuscitated with shed blood plus half the volume of lactated Ringer's solution. Serum alanine aminotransferase (ALT), necrosis, apoptosis and oxidative stress were assessed 6 h after resuscitation. Mitochondrial polarization was assessed by intravital microscopy. After H/R, ALT in WT-mice increased from 130 U/L to 4800 U/L. In KO-mice, ALT after H/R was blunted to 1800 U/l (P < 0.05). Necrosis, caspase-3 activity and ROS were all substantially decreased in KO compared to WT mice after H/R. After sham operation, intravital microscopy revealed punctate mitochondrial staining by rhodamine 123 (Rh123), indicating normal mitochondrial polarization. At 4 h after H/R, Rh123 staining became dim and diffuse in 58% of hepatocytes, indicating depolarization and onset of the mitochondrial permeability transition (MPT). By contrast, KO mice displayed less depolarization after H/R (23%, P < 0.05). In conclusion, JNK2 contributes to MPT-mediated liver injury after H/R
Heat Shock Suppresses the Permeability Transition in Rat Liver Mitochondria
Heat shock proteins inhibit apoptotic and necrotic cell death in various cell types. However, the specific mechanism underlying protection by heat shock proteins remains unclear. To test the hypothesis that heat shock proteins inhibit cell death by blocking opening of mitochondrial permeability transition (MPT) pores, mitochondria from heat-preconditioned rat livers were isolated by differential centrifugation. Heat shock inhibited MPT pore opening induced by 50 microm CaCl(2) plus 5 microm HgCl(2) or 1 microm mastoparan and by 200 microm CaCl(2) alone. Half-maximal swelling was delayed 15 min or more after heat shock compared with control. Heat shock also increased the threshold of unregulated (Ca(2+)-independent and cyclosporin A-insensitive) MPT pore opening induced by higher doses of HgCl(2) and mastoparan. Heat shock treatment decreased mitochondrial reactive oxygen species formation by 27% but did not change mitochondrial respiration, membrane potential, Ca(2+) uptake, or total glutathione in mitochondrial and cytosolic extracts of liver. Western blot analysis showed that mitochondrial Hsp25 increased, whereas Hsp10, Hsp60, Hsp70, Hsp75, cyclophilin D, and voltage-dependent anion channel did not change after heat shock. These results indicate that heat shock causes resistance to opening of MPT pores, which may contribute to heat shock protection against cellular injury
Ethanol exposure decreases mitochondrial outer membrane permeability in cultured rat hepatocytes
Mitochondrial metabolism depends on movement of hydrophilic metabolites through the mitochondrial outer membrane via the voltage-dependent anion channel (VDAC). Here we assessed VDAC permeability of intracellular mitochondria in cultured hepatocytes after plasma membrane permeabilization with 8 μM digitonin. Blockade of VDAC with Koenig's polyanion inhibited uncoupled and ADP-stimulated respiration of permeabilized hepatocytes by 33% and 41%, respectively. Tenfold greater digitonin (80 μM) relieved KPA-induced inhibition and also released cytochrome c, signifying mitochondrial outer membrane permeabilization. Acute ethanol exposure also decreased respiration and accessibility of mitochondrial adenylate kinase (AK) of permeabilized hepatocytes membranes by 40% and 32%, respectively. This inhibition was reversed by high digitonin. Outer membrane permeability was independently assessed by confocal microscopy from entrapment of 3 kDa tetramethylrhodamine-conjugated dextran (RhoDex) in mitochondria of mechanically permeabilized hepatocytes. Ethanol decreased RhoDex entrapment in mitochondria by 35% of that observed in control cells. Overall, these results demonstrate that acute ethanol exposure decreases mitochondrial outer membrane permeability most likely by inhibition of VDAC
Secretory Group IIA Phospholipase A 2 Generates Anti-apoptotic Survival Signals in Kidney Fibroblasts
Mammalian group IIA phospholipase A(2) (PLA(2)) is believed to play important roles in inflammation, cell injury, and tumor resistance. However, the cellular site of action has not been clearly defined as it has long been recognized that group IIA PLA(2) is both a secretory and mitochondrial protein. The purpose of this study was to determine the subcellular target of the group IIA PLA(2) and its role in apoptosis stimulated by growth factor withdrawal. Cloning of the rat liver group IIA PLA(2) demonstrated a typical secretory signal and no alternative splicing of the primary transcript. When a sequence including the signal peptide and first 8 residues in the mature enzyme or the entire PLA(2) (including the signal peptide) was fused to enhanced green fluorescent protein, the fusion protein was directed to the secretory pathway rather than mitochondria in baby hamster kidney (BHK) cells. To examine the role of group IIA PLA(2) in cell injury, wild type (wt) rat group IIA PLA(2) and a mutant group IIA PLA(2) containing a His-47 --> Gln mutation (at the catalytic center) were transfected into BHK cells and cells stably expressing these constructs were isolated. After deprivation of growth factors, both normal BHK cells and BHK cells expressing mutant PLA(2) underwent massive apoptosis, while BHK cells expressing wt PLA(2) showed considerable resistance to growth factor withdrawal-induced apoptosis. The secretory PLA(2) inhibitors 12-epi-scalaradial and aristolochic acid abrogated resistance to apoptosis in the wt PLA(2) expressing cells. These two inhibitors did not induce cell death in the presence of fetal bovine serum, suggesting that they induce cell death by blocking PLA(2) generated survival signals. This study demonstrates that group IIA PLA(2) generates anti-apoptotic survival signals in BHK cells targeting the secretory pathway, and suggests that high levels of group IIA PLA(2) accumulated at inflammatory sites may not only regulate inflammation, but also may protect cells from unnecessary death induced by pro-inflammatory agents
Small-for-Size Liver Transplantation Increases Pulmonary Injury in Rats: Prevention by NIM811
Pulmonary complications after liver transplantation (LT) often cause mortality. This study investigated whether small-for-size LT increases acute pulmonary injury and whether NIM811 which improves small-for-size liver graft survival attenuates LT-associated lung injury. Rat livers were reduced to 50% of original size, stored in UW-solution with and without NIM811 (5 μM) for 6 h, and implanted into recipients of the same or about twice the donor weight, resulting in half-size (HSG) and quarter-size grafts (QSG), respectively. Liver injury increased and regeneration was suppressed after QSG transplantation as expected. NIM811 blunted these alterations >75%. Pulmonary histological alterations were minimal at 5–18 h after LT. At 38 h, neutrophils and monocytes/macrophage infiltration, alveolar space exudation, alveolar septal thickening, oxidative/nitrosative protein adduct formation, and alveolar epithelial cell/capillary endothelial apoptosis became overt in the lungs of QSG recipients, but these alterations were mild in full-size and HSG recipients. Liver pretreatment with NIM811 markedly decreased pulmonary injury in QSG recipients. Hepatic TNFα and IL-1β mRNAs and pulmonary ICAM-1 expression were markedly higher after QSG transplantation, which were all decreased by NIM811. Together, dysfunctional small-for-size grafts produce toxic cytokines, leading to lung inflammation and injury. NIM811 decreased toxic cytokine formation, thus attenuating pulmonary injury after small-for-size LT
Polyphenols of Camellia sinenesis decrease mortality, hepatic injury and generation of cytokines and reactive oxygen and nitrogen species after hemorrhage/resuscitation in rats
Background: Reactive oxygen species (ROS) and reactive nitrogen species (RNS) are produced during hemorrhagic shock and resuscitation (H/R), which may contribute to multiple organ failure. The AIM of this study was to test the hypothesis that green tea (Camellia sinenesis) extract containing 85% polyphenols decreases injury after H/R in rats by scavenging ROS and RNS. Method: S: Female Sprague Dawley rats were given 100 mg polyphenol extract/kg body weight or vehicle 2 h prior to hemorrhagic shock. H/R was induced by two protocols: 1) withdrawal of blood to a mean arterial pressure of 40 mm Hg followed by further withdrawals to decrease blood pressure progressively to 28 mm Hg over 1 h (severe), and 2) withdrawal of blood to a sustained hypotension of 40 mm Hg for 1 h (moderate). Rats were then resuscitated over 1 h with 60% of the shed blood volume plus twice the shed blood volume of lactated Ringer's solution. Serum samples were collected at 10 min and 2 h after resuscitation. At 2 or 18 h, livers were harvested for cytokine and 3-nitrotyrosine quantification, immunohistochemical detection of 4-hydroxynonenol (4-HNE) and inducible nitric oxide synthase (iNOS) protein expression. Results: After severe H/R, 18-h survival increased from 20% after vehicle to 70% after polyphenols (p<0.05). After moderate H/R, survival was greater (80%) and not different between vehicle and polyphenols. In moderate H/R, serum alanine aminotransferase (ALT) increased at 10 min and 2 h postresuscitation to 345 and 545 IU/L, respectively. Polyphenol treatment blunted this increase to 153 and 252 IU/L at 10 min and 2 h (p<0.01). Polyphenols also blunted increases in liver homogenates of TNFalpha (7.0 pg/mg with vehicle vs. 4.9 pg/mg with polyphenols, p<0.05), IL-1beta (0.80 vs. 0.37 pg/mg, p<0.05), IL-6 (6.9 vs. 5.1 pg/mg, p<0.05) and nitrotyrosine (1.9 pg/mg vs. 0.6 pg/mg, p<0.05) measured 18 h after H/R. Hepatic 4-HNE immunostaining indicative of lipid peroxidation also decreased from 4.8% after vehicle to 1.5% after polyphenols (p<0.05). By contrast, polyphenols did not block increased iNOS expression at 2 h after H/R. CONCLUSION: Polyphenols decrease ROS/RNS formation and are beneficial after hemorrhagic shock and resuscitation
LP340, a novel histone deacetylase inhibitor, decreases liver injury and fibrosis in mice: role of oxidative stress and microRNA-23a
Effective therapy for liver fibrosis is lacking. Here, we examined whether LP340, the lead candidate of a new-generation of hydrazide-based HDAC1,2,3 inhibitors (HDACi), decreases liver fibrosis. Liver fibrosis was induced by CCl4 treatment and bile duct ligation (BDL) in mice. At 6 weeks after CCl4, serum alanine aminotransferase increased, and necrotic cell death and leukocyte infiltration occurred in the liver. Tumor necrosis factor-α and myeloperoxidase markedly increased, indicating inflammation. After 6 weeks, α-smooth muscle actin (αSMA) and collagen-1 expression increased by 80% and 575%, respectively, indicating hepatic stellate cell (HSC) activation and fibrogenesis. Fibrosis detected by trichrome and Sirius-red staining occurred primarily in pericentral regions with some bridging fibrosis in liver sections. 4-Hydroxynonenal adducts (indicator of oxidative stress), profibrotic cytokine transforming growth factor-β (TGFβ), and TGFβ downstream signaling molecules phospho-Smad2/3 also markedly increased. LP340 attenuated indices of liver injury, inflammation, and fibrosis markedly. Moreover, Ski-related novel protein-N (SnoN), an endogenous inhibitor of TGFβ signaling, decreased, whereas SnoN expression suppressor microRNA-23a (miR23a) increased markedly. LP340 (0.05 mg/kg, ig., daily during the last 2 weeks of CCl4 treatment) decreased 4-hydroxynonenal adducts and miR23a production, blunted SnoN decreases, and inhibited the TGFβ/Smad signaling. By contrast, LP340 had no effect on matrix metalloproteinase-9 expression. LP340 increased histone-3 acetylation but not tubulin acetylation, indicating that LP340 inhibited Class-I but not Class-II HDAC in vivo. After BDL, focal necrosis, inflammation, ductular reactions, and portal and bridging fibrosis occurred at 2 weeks, and αSMA and collagen-1 expression increased by 256% and 560%, respectively. LP340 attenuated liver injury, ductular reactions, inflammation, and liver fibrosis. LP340 also decreased 4-hydroxynonenal adducts and miR23a production, prevented SnoN decreases, and inhibited the TGFβ/Smad signaling after BDL. In vitro, LP340 inhibited immortal human hepatic stellate cells (hTERT-HSC) activation in culture (αSMA and collagen-1 expression) as well as miR23a production, demonstrating its direct inhibitory effects on HSC. In conclusions, LP340 is a promising therapy for both portal and pericentral liver fibrosis, and it works by inhibiting oxidative stress and decreasing miR23a
- …