310 research outputs found

    Three-Dimensional Quantum Gravity Coupled to Gauge Fields

    Get PDF
    We show how to simulate U(1) gauge fields coupled to three-dimensional quantum gravity and then examine the phase diagram of this system. Quenched mean field theory suggests that a transition separates confined and deconfined phases (for the gauge matter) in both the negative curvature phase and the positive curvature phase of the quantum gravity, but numerical simulations find no evidence for such transitions.Comment: 16 page

    Robo-AO Discovery and Basic Characterization of Wide Multiple Star Systems in the Pleiades, Praesepe, and NGC 2264 Clusters

    Get PDF
    We identify and roughly characterize 66 candidate binary star systems in the Pleiades, Praesepe, and NGC 2264 star clusters based on robotic adaptive optics imaging data obtained using Robo-AO at the Palomar 60" telescope. Only ∌\sim10% of our imaged pairs were previously known. We detect companions at red optical wavelengths having physical separations ranging from a few tens to a few thousand AU. A 3-sigma contrast curve generated for each final image provides upper limits to the brightness ratios for any undetected putative companions. The observations are sensitive to companions with maximum contrast ∌\sim6m^m at larger separations. At smaller separations, the mean (best) raw contrast at 2 arcsec is 3.8m^m (6m^m), at 1 arcsec is 3.0m^m (4.5m^m), and at 0.5 arcsec is 1.9m^m (3m^m). PSF subtraction can recover close to the full contrast in to the closer separations. For detected candidate binary pairs, we report separations, position angles, and relative magnitudes. Theoretical isochrones appropriate to the Pleiades and Praesepe clusters are then used to determine the corresponding binary mass ratios, which range from 0.2-0.9 in q=m2/m1q=m_2/m_1. For our sample of roughly solar-mass (FGK type) stars in NGC 2264 and sub-solar-mass (K and early M-type) primaries in the Pleiades and Praesepe, the overall binary frequency is measured at ∌\sim15.5% ±\pm 2%. However, this value should be considered a lower limit to the true binary fraction within the specified separation and mass ratio ranges in these clusters, given that complex and uncertain corrections for sensitivity and completeness have not been applied.Comment: Accepted to A

    New BVI_C Photometry of Low-mass Pleiades Stars: Exploring the Effects of Rotation on Broadband Colors

    Get PDF
    We present new BVI_C photometry for 350 Pleiades proper motion members with 9 < V ≟ 17. Importantly, our new catalog includes a large number of K- and early M-type stars, roughly doubling the number of low-mass stars with well-calibrated Johnson/Cousins photometry in this benchmark cluster. We combine our new photometry with existing photometry from the literature to define a purely empirical isochrone at Pleiades age (≈100 Myr) extending from V = 9 to 17. We use the empirical isochrone to identify 48 new probable binaries and 14 likely nonmembers. The photometrically identified single stars are compared against their expected positions in the color-magnitude diagram (CMD). At 100 Myr, the mid K and early M stars are predicted to lie above the zero-age main sequence (ZAMS) having not yet reached the ZAMS. We find in the B – V versus V CMD that mid K and early M dwarfs are instead displaced below (or blueward of) the ZAMS. Using the stars' previously reported rotation periods, we find a highly statistically significant correlation between rotation period and CMD displacement, in the sense that the more rapidly rotating stars have the largest displacements in the B – V CMD

    Spitzer 24 micron Survey of Debris Disks in the Pleiades

    Get PDF
    We performed a 24 micron 2 Deg X 1 Deg survey of the Pleiades cluster, using the MIPS instrument on Spitzer. Fifty four members ranging in spectral type from B8 to K6 show 24 micron fluxes consistent with bare photospheres. All Be stars show excesses attributed to free-free emission in their gaseous envelopes. Five early-type stars and four solar-type stars show excesses indicative of debris disks. We find a debris disk fraction of 25 % for B-A members and 10 % for F-K3 ones. These fractions appear intermediate between those for younger clusters and for the older field stars. They indicate a decay with age of the frequency of the dust-production events inside the planetary zone, with similar time scales for solar-mass stars as have been found previously for A-stars.Comment: accepted to Ap

    A Search for Photometric Rotation Periods in Low-Mass Stars and Brown Dwarfs in the Pleiades

    Get PDF
    We have photometrically monitored (Cousins Ic) eight low mass stars and brown dwarfs which are probable members of the Pleiades. We derived rotation periods for two of the stars - HHJ409 and CFHT-PL8 - to be 0.258 d and 0.401 d, respectively. The masses of these stars are near 0.4 and 0.08 Msun, respectively; the latter is the second such object near the hydrogen-burning boundary for which a rotation period has been measured. We also observed HHJ409 in V; the relative amplitude in the two bands shows that the spots in that star are about 200 K cooler than the stellar effective temperature of 3560 K and have a filling factor on the order of 13%. With one possible exception, the remaining stars in the sample do not show photometric variations larger than the mean error of measurement. We also examined the M9.5V disk star 2MASSJ0149, which had previously exhibited a strong flare event, but did not detect any photometric variation.Comment: 13 pages, four figures. Accepted for publication in A

    Rotation periods of late-type stars in the young open cluster IC 2602

    Get PDF
    We present the results of a monitoring campaign aimed at deriving rotation periods for a representative sample of stars in the young (30 Myr) open cluster IC 2602. Rotation periods were derived for 29 of 33 stars monitored. The periods derived range from 0.2d (one of the shortest known rotation periods of any single open cluster star) to about 10d (which is almost twice as long as the longest period previously known for a cluster of this age). We are able to confirm 8 previously known periods and derive 21 new ones, delineating the long period end of the distribution. Despite our sensitivity to longer periods, we do not detect any variables with periods longer than about 10d. The combination of these data with those for IC 2391, an almost identical cluster, leads to the following conclusions: 1) The fast rotators in a 30 Myr cluster are distributed across the entire 0.5 < B-V < 1.6 color range. 2) 6 stars in our sample are slow rotators, with periods longer than 6d. 3) The amplitude of variability depends on both the color and the period. The dependence on the latter might be important in understanding the selection effects in the currently available rotation period database and in planning future observations. 4) The interpretation of these data in terms of theoretical models of rotating stars suggests both that disk-interaction is the norm rather than the exception in young stars and that disk-locking times range from zero to a few Myr.Comment: 23 pages, 8 figures, accepted for publication in the Astrophysical Journa

    New Low-Mass Members of the Taurus Star-Forming Region

    Full text link
    Briceno et al. recently used optical imaging, data from the Two-Micron All-Sky Survey (2MASS), and follow-up spectroscopy to search for young low-mass stars and brown dwarfs in 8 square degrees of the Taurus star-forming region. By the end of that study, there remained candidate members of Taurus that lacked the spectroscopic observations needed to measure spectral types and determine membership. In this work, we have obtained spectroscopy of the 22 candidates that have A_V<=8, from which we find six new Taurus members with spectral types of M2.75 through M9. The new M9 source has the second latest spectral type of the known members of Taurus (~0.02 M_sun). Its spectrum contains extremely strong emission in H_alpha (W~950 A) as well as emission in He I 6678 A and the Ca II IR triplet. This is the least massive object known to exhibit emission in He I and Ca II, which together with the strong H_alpha are suggestive of intense accretion.Comment: to be published in The Astrophysical Journal, 13 pages, 6 figures, also found at http://cfa-www.harvard.edu/sfgroup/preprints.htm

    Ongoing evolution of proposal reviews in the Spitzer warm mission

    Get PDF
    The Spitzer Space Telescope is executing the seventh year of extended warm mission science. The cryogenic mission operated from 2003 to 2009. The observing proposal review process has evolved from large, week-long, in-person meetings during the cryogenic mission to the introduction of panel telecon reviews in the warm mission. Further compression of the schedule and budget for the proposal solicitation and selection process led to additional changes in 2014. Large proposals are still reviewed at an in-person meeting but smaller proposals are no longer discussed by a topical science panel. This hybrid process, involving an in-person committee for the larger proposals and strictly external reviewers for the smaller proposals, has been successfully implemented through two observing cycles. While people like the idea of not having to travel to a review it is still the consensus opinion, in our discussions with the community, that the in-person review panel discussions provide the most satisfying result. We continue to use in-person reviews for awarding greater than 90% of the observing time

    A Census of the Young Cluster IC 348

    Full text link
    We present a new census of the stellar and substellar members of the young cluster IC 348. We have obtained images at I and Z for a 42'x28' field encompassing the cluster and have combined these measurements with previous optical and near-infrared photometry. From spectroscopy of candidate cluster members appearing in these data, we have identified 122 new members, 15 of which have spectral types of M6.5-M9, corresponding to masses of 0.08-0.015 M_sun by recent evolutionary models. The latest census for IC 348 now contains a total of 288 members, 23 of which are later than M6 and thus are likely to be brown dwarfs. From an extinction-limited sample of members (A_V<=4) for a 16'x14' field centered on the cluster, we construct an IMF that is unbiased in mass and nearly complete for M/M_sun>=0.03 (<=M8). In logarithmic units where the Salpeter slope is 1.35, the mass function for IC 348 rises from high masses down to a solar mass, rises more slowly down to a maximum at 0.1-0.2 M_sun, and then declines into the substellar regime. In comparison, the similarly-derived IMF for Taurus from Briceno et al. and Luhman et al. rises quickly to a peak near 0.8 M_sun and steadily declines to lower masses. The distinctive shapes of the IMFs in IC 348 and Taurus are reflected in the distributions of spectral types, which peak at M5 and K7, respectively. These data provide compelling, model-independent evidence for a significant variation of the IMF with star-forming conditions.Comment: 47 pages, 14 figures, 3rd para of 4.5.3 has been added, this is final version in press at ApJ, also found at http://cfa-www.harvard.edu/sfgroup/preprints.htm

    Enhancement of the Spitzer Infrared Array Camera Distortion Correction for Parallax Measurements

    Get PDF
    The Spitzer Space Telescope Infrared Array (IRAC) offers a rare opportunity to measure distances and determine physical properties of the faintest and coldest brown dwarfs. The current distortion correction is a 3rd order polynomial represented by TAN-SIP parameters within the headers. The current correction, good to 100 mas, was derived from deep imaging, using marginally resolved galaxies in some cases, and has remained stable throughout both the cryogenic and warm mission. Using recent Spitzer calibration observations mapped to HST/ACS calibration observations of 47 Tuc with an absolute accuracy good to 1 mas, we are working towards a possible 5th order polynomial correction that theoretically could allow measurements to within 20 mas. Extensive testing, using observations of 47 Tuc, NGC 6791 and NGC 2264, are underway, after which the new parameters will be used to update all the 3.6 and 4.5um data taken within warm and cryogenic missions. We anticipate if achievable, this new accuracy could be combined with other ongoing enhancements (Ingalls et al, 9143-52) that will permit measurements of parallaxes out to about 50 pc, increasing the volume surveyed by a factor of 100, and enabling new capabilities such as luminosity measurements of the population of young brown dwarfs in the beta Pictoris moving group
    • 

    corecore