22 research outputs found

    Engineering meniscus structure and function via multi-layered mesenchymal stem cell-seeded nanofibrous scaffolds

    Get PDF
    Despite advances in tissue engineering for the knee meniscus, it remains a challenge to match the complex macroscopic and microscopic structural features of native tissue, including the circumferentially and radially aligned collagen bundles essential for mechanical function. To mimic this structural hierarchy, this study developed multi-lamellar mesenchymal stem cell (MSC)-seeded nanofibrous constructs. Bovine MSCs were seeded onto nanofibrous scaffolds comprised of poly(ε-caprolactone) with fibers aligned in a single direction (0° or 90° to the scaffold long axis) or circumferentially aligned (C). Multi-layer groups (0°/0°/0°, 90°/90°/90°, 0°/90°/0°, 90°/0°/90°, and C/C/C) were created and cultured for a total of 6 weeks under conditions favoring fibrocartilaginous tissue formation. Tensile testing showed that 0° and C single layer constructs had stiffness values several fold higher than 90° constructs. For multi-layer groups, the stiffness of 0°/0°/0° constructs was higher than all other groups, while 90°/90°/90° constructs had the lowest values. Data for collagen content showed a general positive interactive effect for multi-layers relative to single layer constructs, while a positive interaction for stiffness was found only for the C/C/C group. Collagen content and cell infiltration occurred independent of scaffold alignment, and newly formed collagenous matrix followed the scaffold fiber direction. Structural hierarchies within multi-lamellar constructs dictated biomechanical properties, and only the C/C/C constructs with non-orthogonal alignment within layers featured positive mechanical reinforcement as a consequence of the layered construction. These multi-layer constructs may serve as functional substitutes for the meniscus as well as test beds to understand the complex mechanical principles that enable meniscus function

    Factors Associated with Revision Surgery after Internal Fixation of Hip Fractures

    Get PDF
    Background: Femoral neck fractures are associated with high rates of revision surgery after management with internal fixation. Using data from the Fixation using Alternative Implants for the Treatment of Hip fractures (FAITH) trial evaluating methods of internal fixation in patients with femoral neck fractures, we investigated associations between baseline and surgical factors and the need for revision surgery to promote healing, relieve pain, treat infection or improve function over 24 months postsurgery. Additionally, we investigated factors associated with (1) hardware removal and (2) implant exchange from cancellous screws (CS) or sliding hip screw (SHS) to total hip arthroplasty, hemiarthroplasty, or another internal fixation device. Methods: We identified 15 potential factors a priori that may be associated with revision surgery, 7 with hardware removal, and 14 with implant exchange. We used multivariable Cox proportional hazards analyses in our investigation. Results: Factors associated with increased risk of revision surgery included: female sex, [hazard ratio (HR) 1.79, 95% confidence interval (CI) 1.25-2.50; P = 0.001], higher body mass index (fo

    Systematic Review of Cemented and Uncemented Hemiarthroplasty Outcomes for Femoral Neck Fractures

    No full text
    Although hemiarthroplasties are an important treatment for femoral neck fractures, the literature does not provide a clear approach for selecting the implant fixation method. Therefore, we performed a systematic search of the medical literature and identified 11 prospective and retrospective studies that compared results between cemented and uncemented femoral implant fixation methods. After independent blind data extraction, we compared variables between cemented and uncemented cohorts using two different meta-analysis models. Pooled data represented 1632 cemented and 981 uncemented hemiarthroplasties (average age of patients, 78.9 and 77.5 years, respectively). The average operating room times and blood loss volumes were 95 minutes and 467 mL, respectively, for the cemented and 80 minutes and 338 mL for the uncemented cohorts. Postoperative mortality rates, overall complications, and pain were similar between the two cohorts. Despite a few potential trends, we found few statistical differences between cemented and uncemented techniques based on reported outcome measurements. In addition, inspection of this literature underscored the lack of and need for consistent and standardized reporting of outcome variables regarding these procedures
    corecore