10 research outputs found

    Assessing the Suitability of Multiple Dispersion and Land Use Regression Models for Urban Traffic-Related Ultrafine Particles

    Get PDF
    Comparative evaluations are needed to assess the suitability of near-road air pollution models for traffic-related ultrafine particle number concentration (PNC). Our goal was to evaluate the ability of dispersion (CALINE4, AERMOD, R-LINE, and QUIC) and regression models to predict PNC in a residential neighborhood (Somerville) and an urban center (Chinatown) near highways in and near Boston, Massachusetts. PNC was measured in each area, and models were compared to each other and measurements for hot (>18 °C) and cold (<10 °C) hours with wind directions parallel to and perpendicular downwind from highways. In Somerville, correlation and error statistics were typically acceptable, and all models predicted concentration gradients extending ∼100 m from the highway. In contrast, in Chinatown, PNC trends differed among models, and predictions were poorly correlated with measurements likely due to effects of street canyons and nonhighway particle sources. Our results demonstrate the importance of selecting PNC models that align with study area characteristics (e.g., dominant sources and building geometry). We applied widely available models to typical urban study areas; therefore, our results should be generalizable to models of hourly averaged PNC in similar urban areas

    An Hourly Regression Model for Ultrafine Particles in a Near-Highway Urban Area

    Full text link
    Estimating ultrafine particle number concentrations (PNC) near highways for exposure assessment in chronic health studies requires models capable of capturing PNC spatial and temporal variations over the course of a full year. The objectives of this work were to describe the relationship between near-highway PNC and potential predictors, and to build and validate hourly log–linear regression models. PNC was measured near Interstate 93 (I-93) in Somerville, MA using a mobile monitoring platform driven for 234 h on 43 days between August 2009 and September 2010. Compared to urban background, PNC levels were consistently elevated within 100–200 m of I-93, with gradients impacted by meteorological and traffic conditions. Temporal and spatial variables including wind speed and direction, temperature, highway traffic, and distance to I-93 and major roads contributed significantly to the full regression model. Cross-validated model <i>R</i><sup>2</sup> values ranged from 0.38 to 0.47, with higher values achieved (0.43 to 0.53) when short-duration PNC spikes were removed. The model predicts highest PNC near major roads and on cold days with low wind speeds. The model allows estimation of hourly ambient PNC at 20-m resolution in a near-highway neighborhood

    Combining Measurements from Mobile Monitoring and a Reference Site To Develop Models of Ambient Ultrafine Particle Number Concentration at Residences

    Full text link
    Significant spatial and temporal variation in ultrafine particle (UFP; <100 nm in diameter) concentrations creates challenges in developing predictive models for epidemiological investigations. We compared the performance of land-use regression models built by combining mobile and stationary measurements (hybrid model) with a regression model built using mobile measurements only (mobile model) in Chelsea and Boston, MA (USA). In each study area, particle number concentration (PNC; a proxy for UFP) was measured at a stationary reference site and with a mobile laboratory driven along a fixed route during an ∼1-year monitoring period. In comparing PNC measured at 20 residences and PNC estimates from hybrid and mobile models, the hybrid model showed higher Pearson correlations of natural log-transformed PNC (<i>r</i> = 0.73 vs 0.51 in Chelsea; <i>r</i> = 0.74 vs 0.47 in Boston) and lower root-mean-square error in Chelsea (0.61 vs 0.72) but no benefit in Boston (0.72 vs 0.71). All models overpredicted log-transformed PNC by 3–6% at residences, yet the hybrid model reduced the standard deviation of the residuals by 15% in Chelsea and 31% in Boston with better tracking of overnight decreases in PNC. Overall, the hybrid model considerably outperformed the mobile model and could offer reduced exposure error for UFP epidemiology
    corecore