41 research outputs found
p120 GAP Modulates Ras Activation of Jun Kinases and Transformation
Although recent evidence demonstrates that Ras causes transformation by activation of multiple downstream pathways, the specific role of non-Raf effector pathways is presently unknown. Although Ras causes activation of the Jun NH2-terminal kinases (JNKs) via a Raf-independent pathway, the contribution of JNK activation to Ras transformation and the effector that mediates JNK activation have not been established. We observed that a dominant negative mutant of SEK1/JNKK, an activator of JNKs, selectively inhibited oncogenic Ras activation of JNK and Ras transformation, but not Ras activation of the p42 mitogen-activated protein kinase. In contrast, overexpression of wild type SEK1 enhanced Ras activation of JNK and transforming activity. Thus, JNK activation promotes Ras transformation. Furthermore, a dominant negative mutant of p120 GAP (designated N-GAP), a candidate Ras effector, blocked Ras, but not Raf, transformation and blocked Ras, but not Rac, activation of JNK. Since N-GAP overexpression reduced the association of p190 Rac/Rho GAP with endogenous p120 GAP, N-GAP may form nonproductive complexes with components critical for p120 GAP function. In summary, p120 GAP may function as an effector for Ras activation of JNK and Ras transformation
Tumor necrosis factor alpha stimulates AP-1 activity through prolonged activation of the c-Jun kinase.
Tumor necrosis factor alpha (TNF alpha) has multiple biological functions including the prolonged activation of the collagenase and c-jun genes, which are regulated via their AP-1 binding sites. We show that incubating human fibroblasts with TNF alpha induces prolonged activation of JNK, the c-Jun kinase, which phosphorylates the transactivation domain of c-Jun. Furthermore, an immune complex kinase assay specifically demonstrates that TNF alpha stimulates the activity of JNK1, the recently described predominant form of JNK. TNF alpha also produces a small and transient increase in extracellular signal-regulated kinase (ERK) activity and no measured increase in Raf-1 kinase activity. On the other hand, epidermal growth factor causes a prolonged activation of Raf-1 kinase and ERK activity and a smaller, more transient activation of JNK, whereas the phorbol ester phorbol 12-myristate 13-acetate causes a small stimulation of Raf-1 kinase and a pronounced stimulation of ERK activity. The activation of JNK by TNF alpha does not correlate with Raf-1 or ERK activity. The kinetics of Raf-1, ERK, and JNK induction by epidermal growth factor, phorbol 12-myristate 13-acetate, or TNF alpha indicate distinct mechanisms of activation in human fibroblasts
SMAD and p38 MAPK Signaling Pathways Independently Regulate α1(I) Collagen Gene Expression in Unstimulated and Transforming Growth Factor-β-stimulated Hepatic Stellate Cells
The hepatic stellate cell (HSC) is the predominant cell type responsible for excess collagen deposition during liver fibrosis. Both transforming growth factor-beta (TGF-beta), the most potent fibrogenic cytokine for HSCs, which classically activates Smad signaling, and p38 MAPK signaling have been shown to influence collagen gene expression; however, the relative contribution and mechanisms that these two signaling pathways have in regulating collagen gene expression have not been investigated. The aim of this study was to investigate the relative roles and mechanisms of both Smad and p38 MAPK signaling in alpha1(I) collagen gene expression in HSCs. Inhibiting either p38 MAPK or Smad signaling reduced alpha1(I) collagen mRNA expression in untreated or TGF-beta-treated HSCs, and when both signaling pathways were simultaneously inhibited, alpha1(I) collagen gene expression was essentially blocked. Both signaling pathways were found to independently and additively increase alpha1(I) collagen gene expression by transcriptional mechanisms. TGF-beta treatment increased alpha1(I) collagen mRNA half-life, mediated by increased stability of alpha1(I) collagen mRNA through p38 MAPK signaling but not through Smad signaling. In conclusion, both p38 MAPK and Smad signaling independently and additively regulate alpha1(I) collagen gene expression by transcriptional activation, whereas p38 MAPK and not Smad signaling increased alpha1(I) collagen mRNA stability
Raf-independent Deregulation of p38 and JNK Mitogen-activated Protein Kinases Are Critical for Ras Transformation
Activated Ras, but not Raf, causes transformation of RIE-1 epithelial cells, supporting the importance of Raf-independent pathways in mediating Ras transformation. The p38 and JNK mitogen-activated protein kinase cascades are activated by Ras via Raf-independent effector function. Therefore, we determined whether p38 and JNK activation are involved in Ras transformation of RIE-1 epithelial cells. Rather surprisingly, we found that pharmacologic inhibition of p38, together with Raf activation of ERK, was sufficient to mimic the morphologic and growth transformation caused by oncogenic Ras. p38 inhibition together with ERK activation also caused the same alterations in cyclin D1 and p21(CIP1) expression caused by Ras and induced an autocrine growth factor loop important for transformation. Finally, in contrast to p38, we found that JNK activation promoted Ras transformation, and that Ras deregulation of p38 and JNK was not mediated by activation of the Rac small GTPase. We conclude that a key action of Raf-independent effector pathways important for Ras transformation may involve inhibition of p38 and activation of JNK
Physical Association of PDK1 with AKT1 Is Sufficient for Pathway Activation Independent of Membrane Localization and Phosphatidylinositol 3 Kinase
Frequent activation of the AKT serine-threonine kinase in cancer confers resistance to therapy. AKT is activated by a multi-step process involving phosphatidylinositide (PtdIns) phosphate-mediated recruitment of AKT and its upstream kinases, including 3-Phosphoinositide-dependent kinase 1 (PDK1), to the inner surface of the cell membrane. PDK1 in the appropriate context phosphorylates AKT at threonine 308 (T308) to activate AKT. Whether PtdIns(3,4,5)Ps (PtdInsP3) binding and AKT membrane translocation mediate functions other than formation of a functional PDK1::AKT complex have not been fully elucidated. We fused complementary fragments of intensely fluorescent protein (IFP) to AKT1 and PDK1 to induce a stable complex to study the prerequisites of AKT1 phosphorylation and function. In the stabilized PDK1-IFPC::IFPN-AKT1 complex, AKT1 T308 phosphorylation was independent of PtdIns, as demonstrated by treatment with Phosphatidylinositol 3 Kinase (PI3K) inhibitors. Further when interaction with PtdIns and the cell membrane was prevented by creating PH-domain mutants of AKT1 (R25A) and PDK1 (R474A), AKT1 phosphorylation on T308 was maintained in the PDK1-IFPC::IFPN-AKT1 complex. The PDK1-IFPC::IFPN-AKT1 complex was sufficient for phosphorylation of known AKT substrates, and conferred resistance to inhibitors of PI3K (LY294002, PI103, GDC0941 and TGX286) but not inhibitors of the downstream TORC1 complex (rapamycin). Thus the locus of action of targeted therapeutics can be elucidated by the constitutively active AKT1 complex. Our data indicate that PtdIns and membrane localization are not required for AKT phosphorylation and activation, but rather serve to induce a functional physical interaction between PDK1 and AKT. The PDK1-IFPC::IFPN-AKT1 complex provides a cell-based platform to examine specificity of drugs targeting PI3K pathway components
Oncogenic Ha-Ras-induced Signaling Activates NF-κB Transcriptional Activity, Which Is Required for Cellular Transformation
Ras proteins function in stimulating cell proliferation and differentiation through the activation of Raf-dependent and Raf-independent signal transduction pathways and the subsequent activation of specific transcription factors. The transcription factor NF-kappaB has been widely studied as a regulator of genes involved in immune and inflammatory responses. A variety of stimuli activate NF-kappaB through the induced phosphorylation and degradation of the inhibitor IkappaB followed by nuclear translocation of NF-kappaB. We show here that oncogenic forms of Ha-Ras activate NF-kappaB, not through induced nuclear translocation, but rather through the activation of the transcriptional function of the NF-kappaB RelA/p65 subunit. Importantly, RelA/p65 -/- cells are inefficient in the activation of kappaB-dependent gene expression in response to oncogenic Ras expression. Furthermore, IkappaBalpha expression blocks focus formation in NIH3T3 cells induced by oncogenic Ras. These results demonstrate that NF-kappaB is a critical downstream mediator of Ha-Ras signaling and oncogenic potential
The coupling of α 6 β 4 integrin to Ras-MAP kinase pathways mediated by Shc controls keratinocyte proliferation
The signaling pathways linking integrins to nuclear events are incompletely understood. We have examined intracellular signaling by the alpha6beta4 integrin, a laminin receptor expressed in basal keratinocytes and other cells. Ligation of alpha6beta4 in primary human keratinocytes caused tyrosine phosphorylation of Shc, recruitment of Grb2, activation of Ras and stimulation of the MAP kinases Erk and Jnk. In contrast, ligation of the laminin- and collagen-binding integrins alpha3beta1 and alpha2beta1 did not cause these events. While the stimulation of Erk by alpha6beta4 was suppressed by dominant-negative Shc, Ras and RhoA, the activation of Jnk was inhibited by dominant-negative Ras and Rac1 and by the phosphoinositide 3-kinase inhibitor Wortmannin. Adhesion mediated by alpha6beta4 induced transcription from the Fos serum response element and promoted cell cycle progression in response to mitogens. In contrast, alpha3beta1- and alpha2beta1-dependent adhesion did not induce these events. These findings suggest that the coupling of alpha6beta4 integrin to the control of cell cycle progression mediated by Shc regulates the proliferation of basal keratinocytes and possibly other cells which are in contact with the basement membrane in vivo
Transforming Potential of Dbl Family Proteins Correlates with Transcription from the Cyclin D1 Promoter but Not with Activation of Jun NH 2 -terminal Kinase, p38/Mpk2, Serum Response Factor, or c-Jun
The dbl family of oncogenes encodes a large, structurally related, family of growth-regulatory molecules that possess guanine nucleotide exchange factor activity for specific members of the Rho family of Ras-related GTPases. We have evaluated matched sets of weakly and strongly transforming versions of five Dbl family proteins (Lfc, Lsc, Ect2, Dbl, and Dbs) to determine their ability to stimulate signaling pathways that are activated by Rho family proteins. We found that the transforming potential of this panel did not correlate directly with their ability to activate Jun NH2-terminal kinase, p38/Mpk2, serum response factor, or c-Jun. In contrast, transient stimulation of transcription from the cyclin D1 promoter provided a strong correlation with transforming potential, and we found constitutive up-regulation of cyclin D1 protein in Dbl family protein-transformed cells. In addition, we observed that at least two Dbl family members (Lfc and Ect2) induced changes in the actin cytoskeleton and exhibited nuclear signaling profiles that are consistent with a broader range of in vivo substrate utilization than is predicted from their in vitro exchange specificities. In summary, although Dbl family proteins exhibit signaling profiles that are consistent with their in vivo activation of Rho proteins, stimulation of cyclin D1 transcription is the only activity that correlates with transforming potential, thus suggesting that deregulated cell cycle progression may be important for Dbl family protein transformation
Oncogenic Neu/ErbB-2 Increases Ets, AP-1, and NF-B-dependent Gene Expression, and Inhibiting Ets Activation Blocks Neu-mediated Cellular Transformation
Overexpression of Neu (ErbB-2/HER2) is found in approximately 20% of breast tumors. Activation of Neu by a point mutation (NeuT) causes constitutive tyrosine kinase activity of this transmembrane receptor and transforming activity in fibroblasts. To identify downstream targets of Neu, we have analyzed the ability of Neu to activate gene expression. Expression of NeuT, but not normal Neu, caused transcriptional activation of Ets, AP-1, or NF-kappaB-dependent reporter genes. Dominant inhibitory Ras or Raf mutants blocked the Neu-mediated transcriptional activation, confirming that Ras signaling pathways were required for this activation. Analysis with Ets2 mutants indicated that activation of Ets2 transcriptional activity mediated by NeuT or oncogenic Ras required phosphorylation of the same Ets2 residue, threonine 72. Cotransfection of dominant inhibitory Ets2 mutants specifically blocked NeuT-mediated activation of Ets-dependent reporter genes. Furthermore, in focus formation assays using NIH 3T3 cells, the transforming activity of NeuT was inhibited 5-fold when NeuT was cotransfected with a dominant negative Ets2 mutant. However, parallel colony formation assays showed that the Ets2 dominant negative mutant did not inhibit the growth of normal cells. Together, these data show that NeuT activates a variety of transcription factor families via the Ras signaling pathway and that Ets activation is required for NeuT-mediated cellular transformation. Thus, downstream targets of Neu, including Ets transcription factors, may be useful points for therapeutic intervention in Neu/ErbB-2-associated cancers
Isolation of a NCK-associated Kinase, PRK2, an SH3-binding Protein and Potential Effector of Rho Protein Signaling
The NCK adapter protein is comprised of three consecutive Src homology 3 (SH3) protein-protein interaction domains and a C-terminal SH2 domain. Although the association of NCK with activated receptor protein-tyrosine kinases, via its SH2 domain, implicates NCK as a mediator of growth factor-induced signal transduction, little is known about the pathway(s) downstream of NCK recruitment. To identify potential downstream effectors of NCK we screened a bacterial expression library to isolate proteins that bind its SH3 domains. Two molecules were isolated, the Wiskott-Aldrich syndrome protein (WASP, a putative CDC42 effector) and a serine/threonine protein kinase (PRK2, closely related to the putative Rho effector PKN). Using interspecific backcross analysis the Prk2 gene was mapped to mouse chromosome 3. Unlike WASP, which bound the SH3 domains of several signaling proteins, PRK2 specifically bound to the middle SH3 domain of NCK and (weakly) that of phospholipase Cgamma. PRK2 also specifically bound to Rho in a GTP-dependent manner and cooperated with Rho family proteins to induce transcriptional activation via the serum response factor. These data suggest that PRK2 may coordinately mediate signal transduction from activated receptor protein-tyrosine kinases and Rho and that NCK may function as an adapter to connect receptor-mediated events to Rho protein signaling