1,548 research outputs found
Recommended from our members
The cellular basis of distinct thirst modalities
Fluid intake is an essential innate behaviour that is mainly caused by two distinct types of thirst. Increased blood osmolality induces osmotic thirst that drives animals to consume pure water. Conversely, the loss of body fluid induces hypovolaemic thirst, in which animals seek both water and minerals (salts) to recover blood volume. Circumventricular organs in the lamina terminalis are critical sites for sensing both types of thirst-inducing stimulus. However, how different thirst modalities are encoded in the brain remains unknown. Here we employed stimulus-to-cell-type mapping using single-cell RNA sequencing to identify the cellular substrates that underlie distinct types of thirst. These studies revealed diverse types of excitatory and inhibitory neuron in each circumventricular organ structure. We show that unique combinations of these neuron types are activated under osmotic and hypovolaemic stresses. These results elucidate the cellular logic that underlies distinct thirst modalities. Furthermore, optogenetic gain of function in thirst-modality-specific cell types recapitulated water-specific and non-specific fluid appetite caused by the two distinct dipsogenic stimuli. Together, these results show that thirst is a multimodal physiological state, and that different thirst states are mediated by specific neuron types in the mammalian brain
Temporal Modulation of Traveling Waves in the Flow Between Rotating Cylinders With Broken Azimuthal Symmetry
The effect of temporal modulation on traveling waves in the flows in two
distinct systems of rotating cylinders, both with broken azimuthal symmetry,
has been investigated. It is shown that by modulating the control parameter at
twice the critical frequency one can excite phase-locked standing waves and
standing-wave-like states which are not allowed when the system is rotationally
symmetric. We also show how previous theoretical results can be extended to
handle patterns such as these, that are periodic in two spatial direction.Comment: 17 pages in LaTeX, 22 figures available as postscript files from
http://www.esam.nwu.edu/riecke/lit/lit.htm
Spectroscopy and Thermometry of Drumhead Modes in a Mesoscopic Trapped-Ion Crystal using Entanglement
We demonstrate spectroscopy and thermometry of individual motional modes in a
mesoscopic 2D ion array using entanglement-induced decoherence as a method of
transduction. Our system is a 400 m-diameter planar crystal of
several hundred Be ions exhibiting complex drumhead modes in the
confining potential of a Penning trap. Exploiting precise control over the
Be valence electron spins, we apply a homogeneous spin-dependent
optical dipole force to excite arbitrary transverse modes with an effective
wavelength approaching the interparticle spacing (20 \nolinebreakm).
Center-of-mass displacements below 1 nm are detected via entanglement of spin
and motional degrees of freedom.Comment: 12 pages, 7 figures (includes Supplementary Material
Relation between Barrier Conductance and Coulomb Blockade Peak Splitting for Tunnel-Coupled Quantum Dots
We study the relation between the barrier conductance and the Coulomb
blockade peak splitting for two electrostatically equivalent dots connected by
tunneling channels with bandwidths much larger than the dot charging energies.
We note that this problem is equivalent to a well-known single-dot problem and
present solutions for the relation between peak splitting and barrier
conductance in both the weak and strong coupling limits. Results are in good
qualitative agreement with the experimental findings of F. R. Waugh et al.Comment: 19 pages (REVTeX 3.0), 3 Postscript figure
Engineered 2D Ising interactions on a trapped-ion quantum simulator with hundreds of spins
The presence of long-range quantum spin correlations underlies a variety of
physical phenomena in condensed matter systems, potentially including
high-temperature superconductivity. However, many properties of exotic strongly
correlated spin systems (e.g., spin liquids) have proved difficult to study, in
part because calculations involving N-body entanglement become intractable for
as few as N~30 particles. Feynman divined that a quantum simulator - a
special-purpose "analog" processor built using quantum particles (qubits) -
would be inherently adept at such problems. In the context of quantum
magnetism, a number of experiments have demonstrated the feasibility of this
approach. However, simulations of quantum magnetism allowing controlled,
tunable interactions between spins localized on 2D and 3D lattices of more than
a few 10's of qubits have yet to be demonstrated, owing in part to the
technical challenge of realizing large-scale qubit arrays. Here we demonstrate
a variable-range Ising-type spin-spin interaction J_ij on a naturally occurring
2D triangular crystal lattice of hundreds of spin-1/2 particles (9Be+ ions
stored in a Penning trap), a computationally relevant scale more than an order
of magnitude larger than existing experiments. We show that a spin-dependent
optical dipole force can produce an antiferromagnetic interaction J_ij ~
1/d_ij^a, where a is tunable over 0<a<3; d_ij is the distance between spin
pairs. These power-laws correspond physically to infinite-range (a=0),
Coulomb-like (a=1), monopole-dipole (a=2) and dipole-dipole (a=3) couplings.
Experimentally, we demonstrate excellent agreement with theory for 0.05<a<1.4.
This demonstration coupled with the high spin-count, excellent quantum control
and low technical complexity of the Penning trap brings within reach simulation
of interesting and otherwise computationally intractable problems in quantum
magnetism.Comment: 10 pages, 10 figures; article plus Supplementary Material
Osteoid osteoma of the ethmoid bone associated with dacryocystitis
BACKGROUND: Osteoid osteomas (OO) are small, benign osteoblastic lesions. Ethmoid bone OO has been very rarely reported so far. CASE PRESENTATION: We report a case of a 16-year-old boy suffering from persistent epiphora and a mild pain in the area of median canthus, due to a bone density mass within the right ethmoid air cells extending to the ipsilateral right orbit. The mass was removed via an external ethmoidectomy approach. Histopathologic examination of the specimen set the diagnosis of OO. One year after the operation the patient is free of symptoms, while no recurrence occurred. CONCLUSION: A case of ethmoid bone OO associated with dacryocystitis is reported. Although benign and rare, OO should be considered in differential diagnosis of the ethmoid bone osteoblastic lesions
Exact and approximate dynamics of the quantum mechanical O(N) model
We study a quantum dynamical system of N, O(N) symmetric, nonlinear
oscillators as a toy model to investigate the systematics of a 1/N expansion.
The closed time path (CTP) formalism melded with an expansion in 1/N is used to
derive time evolution equations valid to order 1/N (next-to-leading order). The
effective potential is also obtained to this order and its properties
areelucidated. In order to compare theoretical predictions against numerical
solutions of the time-dependent Schrodinger equation, we consider two initial
conditions consistent with O(N) symmetry, one of them a quantum roll, the other
a wave packet initially to one side of the potential minimum, whose center has
all coordinates equal. For the case of the quantum roll we map out the domain
of validity of the large-N expansion. We discuss unitarity violation in the 1/N
expansion; a well-known problem faced by moment truncation techniques. The 1/N
results, both static and dynamic, are also compared to those given by the
Hartree variational ansatz at given values of N. We conclude that late-time
behavior, where nonlinear effects are significant, is not well-described by
either approximation.Comment: 16 pages, 12 figrures, revte
Dynamic Effects and their Control at the LHC
Tune, chromaticity and orbit of the LHC beams have to be precisely controlled by synchronising the magnetic field of quadrupole, sextupole and corrector magnets.This is a challenging task for an accelerator using superconducting magnets, whose field and field errors will have large dynamic effects.The accelerator physics requirements are tight due to the limited dynamic aperture and the large energy stored in the beams.The power converters need to be programmed in order to generate the magnetic functions with defined tolerances. During the injection process and the energy ramp the magnetic performance cannot be predicted with sufficient accuracy, and therefore real-time feedback systems based on magnetic measurements and beam observations are proposed. Beam measurements are used to determine a correction factor for some of the power converters. From magnetic measurements the excitation of small magnets to compensate the sextupolar (b3) and decapolar (b5) field components in the dipole magnets will be derived. To meet these requirements a deterministic control system is envisaged
Higher-Order Results for the Relation between Channel Conductance and the Coulomb Blockade for Two Tunnel-Coupled Quantum Dots
We extend earlier results on the relation between the dimensionless tunneling
channel conductance and the fractional Coulomb blockade peak splitting
for two electrostatically equivalent dots connected by an arbitrary number
of tunneling channels with bandwidths much larger than the
two-dot differential charging energy . By calculating through second
order in in the limit of weak coupling (), we illuminate
the difference in behavior of the large- and
small- regimes and make more plausible extrapolation to the
strong-coupling () limit. For the special case of
and strong coupling, we eliminate an apparent ultraviolet
divergence and obtain the next leading term of an expansion in . We show
that the results we calculate are independent of such band structure details as
the fraction of occupied fermionic single-particle states in the weak-coupling
theory and the nature of the cut-off in the bosonized strong-coupling theory.
The results agree with calculations for metallic junctions in the
limit and improve the previous good
agreement with recent two-channel experiments.Comment: 27 pages, 1 RevTeX file with 4 embedded Postscript figures. Uses eps
Quantum Electronics
Contains reports on three research projects.U. S. Air Force Office of Scientific Research (Contract F44620-71-C-0051)Joint Services Electronics Program (Contract DAAB07-71-C-0300)University of California, Livermore (Subcontract No. 7877409)U. S. Army Research Office - Durham (Contract DAHC04-72-C-0044
- …