10 research outputs found
Conformal coating of amorphous silicon and germanium by high pressure chemical vapor deposition for photovoltaic fabrics
Conformally coating textured, high surface area substrates with high quality semiconductors is challenging. Here, we show that a high pressure chemical vapor deposition process can be employed to conformally coat the individual fibers of several types of flexible fabrics (cotton, carbon, steel) with electronically or optoelectronically active materials. The high pressure (∼30 MPa) significantly increases the deposition rate at low temperatures. As a result, it becomes possible to deposit technologically important hydrogenated amorphous silicon (a-Si:H) from silane by a simple and very practical pyrolysis process without the use of plasma, photochemical, hot-wire, or other forms of activation. By confining gas phase reactions in microscale reactors, we show that the formation of undesired particles is inhibited within the microscale spaces between the individual wires in the fabric structures. Such a conformal coating approach enables the direct fabrication of hydrogenated amorphous silicon-based Schottky junction devices on a stainless steel fabric functioning as a solar fabric
Ultra-low thermal conductivity and acoustic dynamics of Si nanostructured metalattices probed using ultrafast high harmonic beams
We extend optical nanometrology capabilities to smaller dimensions by using tabletop coherent extreme ultraviolet (EUV) beams. Specifically, we characterize thermal transport and acoustic wave propagation in 3D periodic silicon inverse metalattices with <15nm characteristic dimensions. Measurements of the thermal transport demonstrate that metalattices may significantly impede heat flow, making them promising candidates for thermoelectric applications. Extraction of the acoustic wave dispersion down to ~100nm shows good agreement with finite element predictions, confirming that these semiconductor metalattices were fabricated with a very high-quality. These results demonstrate that EUV nanometrology is capable of extracting both dispersion relations, and thermal properties of 3D complex nano-systems, with applications including informed design and process control of nanoscale devices
Ultra-low thermal conductivity and acoustic dynamics of Si nanostructured metalattices probed using ultrafast high harmonic beams
We extend optical nanometrology capabilities to smaller dimensions by using tabletop coherent extreme ultraviolet (EUV) beams. Specifically, we characterize thermal transport and acoustic wave propagation in 3D periodic silicon inverse metalattices with <15nm characteristic dimensions. Measurements of the thermal transport demonstrate that metalattices may significantly impede heat flow, making them promising candidates for thermoelectric applications. Extraction of the acoustic wave dispersion down to ~100nm shows good agreement with finite element predictions, confirming that these semiconductor metalattices were fabricated with a very high-quality. These results demonstrate that EUV nanometrology is capable of extracting both dispersion relations, and thermal properties of 3D complex nano-systems, with applications including informed design and process control of nanoscale devices
What do You Need to Get Male Partners of Pregnant Women Tested for HIV in Resource Limited Settings? The Baby Shower Cluster Randomized Trial
Male partner involvement has the potential to increase uptake of interventions to prevent mother-to-child transmission of HIV (PMTCT). Finding cultural appropriate strategies to promote male partner involvement in PMTCT programs remains an abiding public health challenge. We assessed whether a congregation-based intervention, the Healthy Beginning Initiative (HBI), would lead to increased uptake of HIV testing among male partners of pregnant women during pregnancy. A cluster-randomized controlled trial of forty churches in Southeastern Nigeria randomly assigned to either the HBI (intervention group; IG) or standard of care referral to a health facility (control group; CG) was conducted. Participants in the IG received education and were offered onsite HIV testing. Overall, 2498 male partners enrolled and participated, a participation rate of 88.9%. Results showed that male partners in the IG were 12 times more likely to have had an HIV test compared to male partners of pregnant women in the CG (CG = 37.71% vs. IG = 84.00%; adjusted odds ratio = 11.9; p < .01). Culturally appropriate and community-based interventions can be effective in increasing HIV testing and counseling among male partners of pregnant women