55 research outputs found
The spatially resolved star formation history of the dwarf spiral galaxy NGC 5474
We study the resolved stellar populations and derive the star formation
history of NGC 5474, a peculiar star-forming dwarf galaxy at a distance of
Mpc, using Hubble Space Telescope Advanced Camera for Surveys data
from the Legacy Extragalactic UV Survey (LEGUS) program. We apply an improved
colour-magnitude diagram fitting technique based on the code SFERA and use the
latest PARSEC-COLIBRI stellar models. Our results are the following. The
off-centre bulge-like structure, suggested to constitute the bulge of the
galaxy, is dominated by star formation (SF) activity initiated Gyr ago and
lasted at least up to Gyr ago. Nevertheless, this component shows clear
evidence of prolonged SF activity (lasting until Myr ago). We
estimate the total stellar mass of the bulge-like structure to be \MSUN. Such a mass is consistent with published suggestions
that this structure is in fact an independent system orbiting around and not
within NGC 5474's disc. The stellar over-density located to the South-West of
the bulge-like structure shows a significant SF event older than Gyr, while
it is characterised by two recent peaks of SF, around and
Myr ago. In the last Gyr, the behavior of the stellar disc is consistent with
what is known in the literature as `gasping'. The synchronised burst at
Myr in all components might hint to the recent gravitational interaction
between the stellar bulge-like structure and the disc of NGC 5474.Comment: 18 pages, 12 figures, accepted for publication in Monthly Notices of
the Royal Astronomical Societ
Hierarchical star formation across the grand-design spiral NGC 1566
We investigate how star formation is spatially organized in the grand-design spiral NGC 1566 from deep photometry with the Legacy ExtraGalactic UV Survey. Our contour-based clustering analysis reveals 890 distinct stellar conglomerations at various levels of significance. These star-forming complexes are organized in a hierarchical fashion with the larger congregations consisting of smaller structures, which themselves fragment into even smaller and more compact stellar groupings. Their size distribution, covering a wide range in length-scales, shows a power law as expected from scale-free processes. We explain this shape with a simple âfragmentation and enrichmentâ model. The hierarchical morphology of the complexes is confirmed by their massâsize relation that can be represented by a power law with a fractional exponent, analogous to that determined for fractal molecular clouds. The surface stellar density distribution of the complexes shows a lognormal shape similar to that for supersonic non-gravitating turbulent gas. Between 50 and 65 per cent of the recently formed stars, as well as about 90 per cent of the young star clusters, are found inside the stellar complexes, located along the spiral arms. We find an age difference between young stars inside the complexes and those in their direct vicinity in the arms of at least 10 Myr. This time-scale may relate to the minimum time for stellar evaporation, although we cannot exclude the formation of stars. As expected, star formation preferentially occurs in spiral arms. Our findings reveal turbulent-driven hierarchical star formation along the arms of a grand-design galaxy.DAG kindly acknowledges financial support by the German Research Foundation (DFG) through programme GO 1659/3-2. This research has made use of the NASA/IPAC Extragalactic Database (NED), which is operated by the Jet Propulsion Laboratory, California Institute of Technology, under contract with the National Aeronautics and Space Administration. This research has also made use of the SIMBAD data base (Wenger et al. 2000), operated at CDS, Strasbourg, France. Based on observations made with the NASA/ESA Hubble Space Telescope, obtained from the data archive at the Space Telescope Science Institute (STScI). STScI is operated by the Association of Universities for Research in Astronomy, Inc. under NASA contract NAS 5-26555. These observations are associated with programme GO-13364. Support for programme 13364 was provided by NASA through grants from STScI
X-Shooting ULLYSES: Massive stars at low metallicity: I. Project description
Observations of individual massive stars, super-luminous supernovae, gamma-ray bursts, and gravitational wave events involving spectacular black hole mergers indicate that the low-metallicity Universe is fundamentally different from our own Galaxy. Many transient phenomena will remain enigmatic until we achieve a firm understanding of the physics and evolution of massive stars at low metallicity (Z). The Hubble Space Telescope has devoted 500 orbits to observing âŒ250 massive stars at low Z in the ultraviolet (UV) with the COS and STIS spectrographs under the ULLYSES programme. The complementary X-Shooting ULLYSES (XShootU) project provides an enhanced legacy value with high-quality optical and near-infrared spectra obtained with the wide-wavelength coverage X-shooter spectrograph at ESOa's Very Large Telescope. We present an overview of the XShootU project, showing that combining ULLYSES UV and XShootU optical spectra is critical for the uniform determination of stellar parameters such as effective temperature, surface gravity, luminosity, and abundances, as well as wind properties such as mass-loss rates as a function of Z. As uncertainties in stellar and wind parameters percolate into many adjacent areas of astrophysics, the data and modelling of the XShootU project is expected to be a game changer for our physical understanding of massive stars at low Z. To be able to confidently interpret James Webb Space Telescope spectra of the first stellar generations, the individual spectra of low-Z stars need to be understood, which is exactly where XShootU can deliver
Identification and mitigation of narrow spectral artifacts that degrade searches for persistent gravitational waves in the first two observing runs of Advanced LIGO
Searches are under way in Advanced LIGO and Virgo data for persistent gravitational waves from continuous sources, e.g. rapidly rotating galactic neutron stars, and stochastic sources, e.g. relic gravitational waves from the Big Bang or superposition of distant astrophysical events such as mergers of black holes or neutron stars. These searches can be degraded by the presence of narrow spectral artifacts (lines) due to instrumental or environmental disturbances. We describe a variety of methods used for finding, identifying and mitigating these artifacts, illustrated with particular examples. Results are provided in the form of lists of line artifacts that can safely be treated as non-astrophysical. Such lists are used to improve the efficiencies and sensitivities of continuous and stochastic gravitational wave searches by allowing vetoes of false outliers and permitting data cleaning
The population of merging compact binaries inferred using gravitational waves through GWTC-3
We report on the population properties of 76 compact binary mergers detected with gravitational waves below a false alarm rate of 1 per year through GWTC-3. The catalog contains three classes of binary mergers: BBH, BNS, and NSBH mergers. We infer the BNS merger rate to be between 10 and 1700 and the NSBH merger rate to be between 7.8 and 140 , assuming a constant rate density versus comoving volume and taking the union of 90% credible intervals for methods used in this work. Accounting for the BBH merger rate to evolve with redshift, we find the BBH merger rate to be between 17.9 and 44 at a fiducial redshift (z=0.2). We obtain a broad neutron star mass distribution extending from to . We can confidently identify a rapid decrease in merger rate versus component mass between neutron star-like masses and black-hole-like masses, but there is no evidence that the merger rate increases again before 10 . We also find the BBH mass distribution has localized over- and under-densities relative to a power law distribution. While we continue to find the mass distribution of a binary's more massive component strongly decreases as a function of primary mass, we observe no evidence of a strongly suppressed merger rate above . The rate of BBH mergers is observed to increase with redshift at a rate proportional to with for . Observed black hole spins are small, with half of spin magnitudes below . We observe evidence of negative aligned spins in the population, and an increase in spin magnitude for systems with more unequal mass ratio
Search for gravitational waves associated with gamma-ray bursts detected by Fermi and Swift during the LIGOâVirgo run O3b
We search for gravitational-wave signals associated with gamma-ray bursts (GRBs) detected by the Fermi and Swift satellites during the second half of the third observing run of Advanced LIGO and Advanced Virgo (2019 November 1 15:00 UTCâ2020 March 27 17:00 UTC). We conduct two independent searches: a generic gravitational-wave transients search to analyze 86 GRBs and an analysis to target binary mergers with at least one neutron star as short GRB progenitors for 17 events. We find no significant evidence for gravitational-wave signals associated with any of these GRBs. A weighted binomial test of the combined results finds no evidence for subthreshold gravitational-wave signals associated with this GRB ensemble either. We use several source types and signal morphologies during the searches, resulting in lower bounds on the estimated distance to each GRB. Finally, we constrain the population of low-luminosity short GRBs using results from the first to the third observing runs of Advanced LIGO and Advanced Virgo. The resulting population is in accordance with the local binary neutron star merger rate
Narrowband searches for continuous and long-duration transient gravitational waves from known pulsars in the LIGO-Virgo third observing run
Isolated neutron stars that are asymmetric with respect to their spin axis are possible sources of detectable continuous gravitational waves. This paper presents a fully coherent search for such signals from eighteen pulsars in data from LIGO and Virgo's third observing run (O3). For known pulsars, efficient and sensitive matched-filter searches can be carried out if one assumes the gravitational radiation is phase-locked to the electromagnetic emission. In the search presented here, we relax this assumption and allow both the frequency and the time derivative of the frequency of the gravitational waves to vary in a small range around those inferred from electromagnetic observations. We find no evidence for continuous gravitational waves, and set upper limits on the strain amplitude for each target. These limits are more constraining for seven of the targets than the spin-down limit defined by ascribing all rotational energy loss to gravitational radiation. In an additional search, we look in O3 data for long-duration (hoursâmonths) transient gravitational waves in the aftermath of pulsar glitches for six targets with a total of nine glitches. We report two marginal outliers from this search, but find no clear evidence for such emission either. The resulting duration-dependent strain upper limits do not surpass indirect energy constraints for any of these targets
Star cluster catalogues for the LEGUS dwarf galaxies
We present a new Bayesian hierarchical model (BHM) named Steve for performing Type Ia supernova (SN Ia) cosmology fits. This advances previous works by including an improved treatment of Malmquist bias, accounting for additional sources of systematic uncertainty, and increasing numerical efficiency. Given light-curve fit parameters, redshifts, and host-galaxy masses, we fit Steve simultaneously for parameters describing cosmology, SN Ia populations, and systematic uncertainties. Selection effects are characterized using Monte Carlo simulations. We demonstrate its implementation by fitting realizations of SN Ia data sets where the SN Ia model closely follows that used in Steve. Next, we validate on more realistic SNANA simulations of SN Ia samples from the Dark Energy Survey and low-redshift surveys (DES Collaboration et al. 2018). These simulated data sets contain more than 60,000 SNe Ia, which we use to evaluate biases in the recovery of cosmological parameters, specifically the equation of state of dark energy, w. This is the most rigorous test of a BHM method applied to SN Ia cosmology fitting and reveals small w biases that depend on the simulated SN Ia properties, in particular the intrinsic SN Ia scatter model. This w bias is less than 0.03 on average, less than half the statistical uncertainty on w. These simulation test results are a concern for BHM cosmology fitting applications on large upcoming surveys; therefore, future development will focus on minimizing the sensitivity of Steve to the SN Ia intrinsic scatter model.AA acknowledges the support of the
Swedish Research Council (Vetenskapsradet) and the Swedish
National Space Board (SNSB). DAG acknowledges support by
the German Aerospace Center (DLR) and the Federal Ministry for
Economic Affairs and Energy (BMWi) through program 50OR1801
âMYSST: Mapping Young Stars in Space and Timeâ
The habitable exoplanet observatory (HabEx) mission concept study interim report
For the first time in human history, technologies have matured sufficiently to enable a mission capable of discovering and characterizing habitable planets like Earth orbiting sunlike stars other than the Sun. At the same time, such a platform would enable unique science not possible from ground-based facilities. This science is broad and exciting, ranging from new investigations of our own solar system to a full range of astrophysics disciplines. The Habitable Exoplanet Observatory, or HabEx, is one of four studies currently being undertaken by NASA in preparation for the 2020 Astrophysics Decadal Survey. HabEx has been designed to be the Great Observatory of the 2030s, with community involvement through a competed and funded Guest Observer (GO) program. This interim report describes the HabEx baseline concept, which is a space-based 4-meter diameter telescope mission concept with ultraviolet (UV), optical, and near-infrared (near-IR) imaging and spectroscopy capabilities. More information on HabEx can be found at https://www.jpl.nasa.gov/habexPublished versio
- âŠ