16 research outputs found

    Weak preservation of local neutral substitution rates across mammalian genomes

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The rate at which neutral (non-functional) bases undergo substitution is highly dependent on their location within a genome. However, it is not clear how fast these location-dependent rates change, or to what extent the substitution rate <it>patterns </it>are conserved between lineages. To address this question, which is critical not only for understanding the substitution process but also for evaluating phylogenetic footprinting algorithms, we examine ancestral repeats: a predominantly neutral dataset with a significantly higher genomic density than other datasets commonly used to study substitution rate variation. Using this repeat data, we measure the extent to which orthologous ancestral repeat sequences exhibit similar substitution patterns in separate mammalian lineages, allowing us to ascertain how well local substitution rates have been preserved across species.</p> <p>Results</p> <p>We calculated substitution rates for each ancestral repeat in each of three independent mammalian lineages (primate – from human/macaque alignments, rodent – from mouse/rat alignments, and laurasiatheria – from dog/cow alignments). We then measured the correlation of local substitution rates among these lineages. Overall we found the correlations between lineages to be statistically significant, but too weak to have much predictive power (<it>r</it><sup>2 </sup><<it>5%</it>). These correlations were found to be primarily driven by regional effects at the scale of several hundred kb or larger. A few repeat classes (e.g. 7SK, Charlie8, and MER121) also exhibited stronger conservation of rate patterns, likely due to the effect of repeat-specific purifying selection. These classes should be excluded when estimating local neutral substitution rates.</p> <p>Conclusion</p> <p>Although local neutral substitution rates have some correlations among mammalian species, these correlations have little predictive power on the scale of individual repeats. This indicates that local substitution rates have changed significantly among the lineages we have studied, and are likely to have changed even more for more diverged lineages. The correlations that do persist are too weak to be responsible for many of the highly conserved elements found by phylogenetic footprinting algorithms, leading us to conclude that such elements must be conserved due to selective forces.</p

    Human-macaque comparisons illuminate variation in neutral substitution rates

    Get PDF
    The evolutionary distance between human and macaque is particularly attractive for investigating neutral substitution rates, which were calculated as a function of a number of genomic parameters

    Pseudogene.org: a comprehensive database and comparison platform for pseudogene annotation

    Get PDF
    The Pseudogene.org knowledgebase serves as a comprehensive repository for pseudogene annotation. The definition of a pseudogene varies within the literature, resulting in significantly different approaches to the problem of identification. Consequently, it is difficult to maintain a consistent collection of pseudogenes in detail necessary for their effective use. Our database is designed to address this issue. It integrates a variety of heterogeneous resources and supports a subset structure that highlights specific groups of pseudogenes that are of interest to the research community. Tools are provided for the comparison of sets and the creation of layered set unions, enabling researchers to derive a current β€˜consensus’ set of pseudogenes. Additional features include versatile search, the capacity for robust interaction with other databases, the ability to reconstruct older versions of the database (accounting for changing genome builds) and an underlying object-oriented interface designed for researchers with a minimal knowledge of programming. At the present time, the database contains more than 100 000 pseudogenes spanning 64 prokaryote and 11 eukaryote genomes, including a collection of human annotations compiled from 16 sources

    Perturbation Method for Probabilistic Search for the Traveling

    No full text
    The Traveling Salesperson Problem (TSP), is an NP-complete combinatorial optimization problem of substantial importance in many scheduling applications. Here we show the viability of SPAN, a hybrid approach to solving the TSP that incorporates a perturbation method applied to a classic heuristic in the overall context of a probabilistic search control strategy. In particular, the heuristic for the TSP is based on the minimal spanning tree of the city locations, the perturbation method is a simple modification of the city locations, and the control strategy is a genetic algorithm (GA). The crucial concept here is that the perturbation of the problem (since the city locations specify the problem instance) allows variant solutions (to the perturbed problem) to be generated by the heuristic and applied to the original problem, thus providing the GA with capabilities for both exploration and exploitation in its search process. We demonstrate that SPAN outperforms, with regard to solution quality, one of the best GA systems reported in the literature
    corecore