36 research outputs found

    Perioperative lung protective ventilation in obese patients

    Get PDF

    Generation of Hydroxyl Radical by Enzymes, Chemicals, and Human Phagocytes In Vitro: DETECTION WITH THE ANTI-INFLAMMATORY AGENT, DIMETHYL SULFOXIDE

    No full text
    Methane (CH(4)) production from the anti-inflammatory agent, dimethyl sulfoxide (DMSO), was used to measure 路OH from chemical reactions or human phagocytes. Reactions producing 路OH (xanthine/xanthine oxidase or Fe(++)/EDTA/H(2)O(2)) generated CH(4) from DMSO, whereas reactions yielding primarily O-(2虈) or H(2)O(2) failed to produce CH(4). Neutrophils (PMN), monocytes, and alveolar macrophages also produced CH(4) from DMSO. Mass spectroscopy using d(6)-DMSO showed formation of d(3)-CH(4) indicating that CH(4) was derived from DMSO. Methane generation by normal but not chronic granulomatous disease or heat-killed phagocytes increased after stimulation with opsonized zymosan particles or the chemical, phorbol myristate acetate. Methane production from DMSO increased as the number of stimulated PMN was increased and the kinetics of CH(4) production approximated other metabolic activities of stimulated PMN. Methane production from stimulated phagocytes and DMSO was markedly decreased by purportedly potent 路OH scavengers (thiourea or tryptophane) and diminished to lesser degrees by weaker 路OH scavengers (mannitol, ethanol, or sodium benzoate). Superoxide dismutase or catalase also decreased CH(4) production but urea, albumin, inactivated superoxide dismutase, or boiled catalase had no appreciable effect. The results suggest that the production of CH(4) from DMSO may reflect release of 路OH from both chemical systems and phagocytic cells. Interaction of the nontoxic, highly permeable DMSO with 路OH may explain the anti-inflammatory actions of DMSO and provide a useful measurement of 路OH in vitro and in vivo

    L-ergothioneine reduces nitration of lactoferrin and loss of antibacterial activity associated with nitrosative stress

    No full text
    Lactoferrin (LF) is a multifunctional antimicrobial, anti-inflammatory, and antioxidant protein that occurs naturally in mammals, most notably in exocrine gland tissues and fluids, such as in the eye. Nitrosative stress can promote changes to tyrosine and other amino acid residues of the protein, which also reduces the activity of LF. l-ergothioneine (ET) is a potent anti-inflammatory antioxidant present in the eye and other tissues through nutrition or supplementation and that may play a role in the prevention or treatment of a variety of diseases. Here we investigated the ability of ET to reduce 3-nitrotyrosine (NTyr) formation using two separate substrates, with the goal of determining whether ET can protect the antibacterial function of LF and other proteins when exposed separately to peroxynitrite and tetranitromethane as nitrating reagents. Native human LF was used as a simple protein substrate, and lamb corneal lysate was chosen as one example of mammalian tissue with a more complex mixture of proteins and other biomolecules. Nitration was monitored by absorbance and fluorescence spectroscopy as well as sandwich (nitrated LF) and direct NTyr (corneal lysate) enzyme-linked immunosorbent assays (ELISAs). We found that pretreatment with ET reduced chemical modification of both native LF and corneal lysate samples and loss of antibacterial LF function due to exposure to the nitrating reagents. These initial results suggest that ET, raised to sufficiently elevated levels, could be tailored as a therapeutic agent to reduce effects of nitrosative stress on LF and in turn sustain the protein activity

    Effects of Phorbol Myristate Acetate on the Metabolism and Ultrastructure of Neutrophils in Chronic Granulomatous Disease

    No full text
    Previous investigations have demonstrated that phorbol myristate acetate (PMA), the active principle of croton oil, stimulates alterations in normal polymorphonuclear leukocytes (PMN) that resemble closely the changes that develop in the cells after phagocytosis of bacteria. The present study has compared the effects of PMA and heat-killed bacteria on the oxygen uptake, glucose oxidation, nitroblue tetrazolium (NBT) reduction, and ultrastructure of normal neutrophils and PMN from six patients with chronic granulomatous disease (CGD). PMA stimulated oxygen consumption, hexose monophosphate shunt activity, and NBT reduction in normal cells but failed to produce similar effects in CGD neutrophils. However, PMA did induce formation of cytoplasmic vacuoles in the CGD cells similar to those observed in normal neutrophils. The results indicate that PMA is a useful nonparticulate agent for distinguishing between normal and CGD neutrophils and for studying basic mechanisms of phagocytosis in normal and abnormal PMN

    Perioperative lung protective ventilation in obese patients

    No full text
    The perioperative use and relevance of protective ventilation in surgical patients is being increasingly recognized. Obesity poses particular challenges to adequate mechanical ventilation in addition to surgical constraints, primarily by restricted lung mechanics due to excessive adiposity, frequent respiratory comorbidities (i.e. sleep apnea, asthma), and concerns of postoperative respiratory depression and other pulmonary complications. The number of surgical patients with obesity is increasing, and facing these challenges is common in the operating rooms and critical care units worldwide. In this review we summarize the existing literature which supports the following recommendations for the perioperative ventilation in obese patients: (1) the use of protective ventilation with low tidal volumes (approximately 8 mL/kg, calculated based on predicted -not actual- body weight) to avoid volutrauma; (2) a focus on lung recruitment by utilizing PEEP (8-15 cmH2O) in addition to recruitment maneuvers during the intraoperative period, as well as incentivized deep breathing and noninvasive ventilation early in the postoperative period, to avoid atelectasis, hypoxemia and atelectrauma; and (3) a judicious oxygen use (ideally less than 0.8) to avoid hypoxemia but also possible reabsorption atelectasis. Obesity poses an additional challenge for achieving adequate protective ventilation during one-lung ventilation, but different lung isolation techniques have been adequately performed in obese patients by experienced providers. Postoperative efforts should be directed to avoid hypoventilation, atelectasis and hypoxemia. Further studies are needed to better define optimum protective ventilation strategies and analyze their impact on the perioperative outcomes of surgical patients with obesit
    corecore