4 research outputs found

    A collection of INDEL markers for map-based cloning in seven Arabidopsis accessions

    Get PDF
    The availability of a comprehensive set of resources including an entire annotated reference genome, sequenced alternative accessions, and a multitude of marker systems makes Arabidopsis thaliana an ideal platform for genetic mapping. PCR markers based on INsertions/DELetions (INDELs) are currently the most frequently used polymorphisms. For the most commonly used mapping combination, Columbia×Landsberg erecta (Col-0×Ler-0), the Cereon polymorphism database is a valuable resource for the generation of polymorphic markers. However, because the number of markers available in public databases for accessions other than Col-0 and Ler-0 is extremely low, mapping using other accessions is far from straightforward. This issue arose while cloning mutations in the Wassilewskija (Ws-4) background. In this work, approaches are described for marker generation in Ws-4 x Col-0. Complementary strategies were employed to generate 229 INDEL markers. Firstly, existing Col-0/Ler-0 Cereon predicted polymorphisms were mined for transferability to Ws-4. Secondly, Ws-0 ecotype Illumina sequence data were analyzed to identify INDELs that could be used for the development of PCR-based markers for Col-0 and Ws-4. Finally, shotgun sequencing allowed the identification of INDELs directly between Col-0 and Ws-4. The polymorphism of the 229 markers was assessed in seven widely used Arabidopsis accessions, and PCR markers that allow a clear distinction between the diverged Ws-0 and Ws-4 accessions are detailed. The utility of the markers was demonstrated by mapping more than 35 mutations in a Col-0×Ws-4 combination, an example of which is presented here. The potential contribution of next generation sequencing technologies to more traditional map-based cloning is discussed

    Identification of new adventitious rooting mutants amongst suppressors of the Arabidopsis thaliana superroot2 mutation

    No full text
    Auxin is a major regulator of adventitious rooting and, to better understand its role, we identified suppressor mutants of superroot2-1. This provides new resources for the discovery of genetic players involved in auxin signalling or auxin crosstalk with other hormones.The plant hormone auxin plays a central role in adventitious rooting and is routinely used with many economically important, vegetatively propagated plant species to promote adventitious root initiation and development on cuttings. Nevertheless the molecular mechanisms through which it acts are only starting to emerge. The Arabidopsis superroot2-1 (sur2-1) mutant overproduces auxin and, as a consequence, develops excessive adventitious roots in the hypocotyl. In order to increase the knowledge of adventitious rooting and of auxin signalling pathways and crosstalk, this study performed a screen for suppressors of superroot2-1 phenotype. These suppressors provide a new resource for discovery of genetic players involved in auxin signalling pathways or at the crosstalk of auxin and other hormones or environmental signals. This study reports the identification and characterization of 26 sur2-1 suppressor mutants, several of which were identified as mutations in candidate genes involved in either auxin biosynthesis or signalling. In addition to confirming the role of auxin as a central regulator of adventitious rooting, superroot2 suppressors indicated possible crosstalk with ethylene signalling in this process
    corecore