124 research outputs found
Effect of axonal micro-tubules on the morphology of retinal nerve fibers studied by second-harmonic generation
Abstract. Many studies suggest that the degradation of microtubules in the retinal ganglion cells may be an early event in the progression of glaucoma. Because reflectance and birefringence of the retinal nerve fibers arise primarily from microtubules, the optical properties have been intensively studied for early detection of the disease. We previously reported a novel nonlinear optical signal from axonal microtubules for visualizing the retinal nerve fibers, namely second-harmonic generation (SHG). We demonstrate the use of axonal SHG to investigate the effect of microtubules on the morphology of the retinal nerve fiber bundles. Time-lapse SHG imaging of ex vivo rat retinal flat mounts was performed during pharmacological treatment of nocodazole, and the intensity of axonal SHG and the changes in nerve fiber bundle morphology were monitored. We found that the microtubule disruption does not lead to immediate modification in the morphology of the nerve fibers. Our results indicate that microtubular SHG may provide a useful means for sensitive detection of axonal injuries. Since the intrinsic radiation depends on the regular architecture of the cytoskeleton element as maintained by active cellular regulations, the intensity of signal reflects the health of the retinal ganglion cell axons
Electrocardiogram-gated single-photonemission computed tomography versus cardiacmagnetic resonance imaging for the assessmentof left ventricular volumes and ejection fraction A meta-analysis
AbstractObjectivesThe purpose of this study was to evaluate the accuracy of electrocardiogram (ECG)-gated single-photon emission computed tomography (SPECT) for assessment of left ventricular (LV) end-diastolic volume (EDV), end-systolic volume (ESV) and ejection fraction (EF) compared with the gold standard of cardiac magnetic resonance imaging (MRI).BackgroundSeveral comparisons of ECG-gated SPECT with cardiac MRI have been performed for evaluation of LV volumes and EF, but each has considered few subjects, thus leaving uncertainty about the frequency of discrepancies between the two methods.MethodsWe performed a meta-analysis of data on 164 subjects from nine studies comparing ECG-gated SPECT versus cardiac MRI. Data were pooled in correlation and regression analyses relating ECG-gated SPECT and cardiac MRI measurements. The frequency of discrepancies of at least 30 ml in EDV, 20 ml in ESV and 5% or 10% in EF and concordance for EF ≤40% versus >40% were determined.ResultsThere was an overall excellent correlation between ECG-gated SPECT and cardiac MRI for EDV (r = 0.89), ESV (r = 0.92) and EF (r = 0.87). However, rates of discrepancies for individual subjects were considerable (37% [95% confidence interval {CI}, 26% to 50%] for at least 30 ml in EDV; 35% [95% CI, 23% to 49%] for at least 20 ml in ESV; 52% [95% CI, 37% to 63%] for at least 5% in EF; and 23% [95% CI, 11% to 42%] for at least 10% in EF). The misclassification rate for the 40% EF cutoff was 11%.ConclusionsElectrocardiogram-gated SPECT measurements of EDV, ESV and EF show high correlation with cardiac MRI measurements, but substantial errors may occur in individual patients. Electrocardiogram-gated SPECT offers useful functional information, but cardiac MRI should be used when accurate measurement is required
Reduction of Steroid-Induced Intraocular Pressure Elevation in Sheep by Tissue Plasminogen Activator
PURPOSE. To investigate whether tissue plasminogen activator (tPA) can prevent and/or reverse steroid-induced IOP elevation in an ovine model.
METHODS. Three animal groups were subjected to bilateral steroid-induced IOP elevation using thrice daily topical ocular prednisolone administration. In the first group (N ÂĽ 8), one eye each of two sheep was injected intravitreally with 100 lg, 200 lg, 500 lg, or 1 mg human recombinant tPA, while contralateral eyes received vehicle. In the second group (N ÂĽ 2), one eye was injected intravitreally with tPA (100 lg), while contralateral eyes received vehicle containing L-arginine. In the third group (N ÂĽ 4), each animal received intravitreal tPA in one eye concurrently with initiation of bilateral steroid administration. IOP was monitored for the duration of the experiment. Tissues from eyes of the third group were used to determine relative gene expression.
RESULTS. In the first and second groups, IOP decreased by 9.7 (62.8) and 9.7 (61.6) mm Hg, respectively, 24 hours after tPA administration. In the third group, tPA-treated eyes did not develop IOP elevation with DIOP of 11.8 (61.3) mm Hg 8 days later. In all tPA-treated eyes, IOP remained low until the end of the study. mRNA levels in the trabecular meshwork were decreased for plasminogen activator tissue (PLAT), increased for matrix-metalloproteinase 1 (MMP-1), and stable for plasminogen activator inhibitor 1 (PAI-1), MMP-2, MMP-9, and MMP- 13 in tPA-treated eyes compared with contralateral controls. PAI-1 mRNA levels in ciliary processes also remained similar.
CONCLUSIONS. Recombinant human tPA is effective in both preventing and reversing steroidinduced IOP elevation in sheep. Tissue plasminogen activator may be useful as a therapeutic agent in steroid-induced glaucoma.Fil: Gerometta, Rosana MarĂa del Rosario. University Of New York; Estados Unidos. Universidad Nacional del Nordeste. Facultad de Medicina; Argentina. Consejo Nacional de Investigaciones CientĂficas y TĂ©cnicas; ArgentinaFil: Kumar, Sandeep. State University Of New York; Estados UnidosFil: Shah, Shaily. State University Of New York; Estados UnidosFil: Alvarez, Larry. State University Of New York; Estados UnidosFil: Candia, Oscar. State University Of New York; Estados UnidosFil: Danias, John. State University Of New York; Estados Unido
Tissue Plasminogen Activator in Trabecular Meshwork Attenuates Steroid Induced Outflow Resistance in Mice
Tissue plasminogen activator, a serine protease encoded by the PLAT gene is present in the trabecular meshwork (TM) and other ocular tissues and has been reported to be downregulated by treatment with steroids in vitro. Steroids are known to cause changes in outflow facility of aqueous humor in many species. In the present study, we tested whether overexpression of PLAT can prevent and/or reverse the outflow facility of mouse eyes treated with steroids. Animals received bilateral injection with 20 µl of triamcinolone acetonide (TA) (40mg/ml) suspension subconjunctivally to induce outflow facility changes. Some animals received unilateral intracameral injection with 2 µl of adenoviral suspension [3-4x1012 virus genomes per milliliter (vg/ml)] carrying sheep PLAT cDNA (AdPLAT) either concurrently with TA injection or one week after TA injection, whereas others received bilateral intracameral injection with 2µl of adenoviral suspension (9x1012 vg/ml) carrying no transgene (AdNull) concurrently with TA injection. Animals were sacrificed one week after AdPLAT or AdNull treatment. Endogenous mRNA expression levels of mouse PAI-1 and MMP-2, -9 and -13 were also measured using qRT-PCR. Outflow facility one week after AdPLAT administration was increased by 60% and 63% respectively for animals that had not or had been pretreated with steroids. Overexpression of PLAT significantly upregulated expression of PAI-1, MMP-2, -9 and -13 compared to the levels found in TA only treated eyes. These findings suggest that overexpression of PLAT in TM of mouse eyes can both prevent and reverse the decrease in outflow facility caused by steroid treatment and is associated with upregulation of MMPs
Complement Expression in the Retina is not Influenced by Short-term Pressure Elevation
Purpose: To determine whether short-term pressure elevation affects complement gene expression in the retina in vitro and in vivo.
Methods: Muller cell (TR-MUL5) cultures and organotypic retinal cultures from adult mice and monkeys were sub- jected to either 24-h or 72-h of pressure at 0, 15, 30, and 45 mmHg above ambient. C57BL/6 mice were subjected to microbead-induced intraocular pressure (IOP) elevation for 7 days. RNA and protein were extracted and used for analysis of expression levels of complement component genes and complement component 1, q subcomponent (C1q) and comple- ment factor H (CFH) immunoblotting.
Results: mRNA levels of complement genes and C1q protein levels in Muller cell cultures remained the same for all pressure levels after exposure for either 24 or 72 h. In primate and murine organotypic cultures, pressure elevation did not produce changes in complement gene expression or C1q and CFH protein levels at either the 24-h or 72-h time points. Pressure-related glial fibrillary acidic protein (GFAP) mRNA expression changes were detected in primate retinal organotypic cultures (analysis of variance [ANOVA]; p0.05 for both) with contralateral control and naĂŻve control eyes.
Conclusions: Short-term elevation of pressure in vitro as well as short-term (1 week) IOP elevation in vivo does not seem to dramatically alter complement system gene expression in the retina. Prolonged expression to elevated pressure may be necessary to affect the complement system expression
Vascular function assessed with cardiovascular magnetic resonance predicts survival in patients with advanced chronic kidney disease
<p>Abstract</p> <p>Background</p> <p>Increased arterial stiffness is associated with mortality in patients with chronic kidney disease. Cardiovascular magnetic resonance (CMR) permits assessment of the central arteries to measure aortic function.</p> <p>Methods</p> <p>We studied the relationship between central haemodynamics and outcome using CMR in 144 chronic kidney disease patients with estimated glomerular filtration rate <15 ml/min (110 on dialysis). Aortic distensibilty and volumetric arterial strain were calculated from cross sectional aortic volume and pulse pressure measured during the scan.</p> <p>Results</p> <p>Median follow up after the scan was 24 months. There were no significant differences in aortic distensibilty or aortic volumetric arterial strain between pre-dialysis and dialysis patients. Aortic distensibilty and volumetric arterial strain negatively correlated with age. Aortic distensibilty and volumetric arterial strain were lower in diabetics, patients with ischaemic heart disease and peripheral vascular disease. During follow up there were 20 deaths. Patients who died had lower aortic distensibilty than survivors. In a survival analysis, diabetes, systolic blood pressure and aortic distensibilty were independent predictors of mortality. There were 12 non-fatal cardiovascular events during follow up. Analysing the combined end point of death or a vascular event, diabetes, aortic distensibilty and volumetric arterial strain were predictors of events.</p> <p>Conclusion</p> <p>Deranged vascular function measured with CMR correlates with cardiovascular risk factors and predicts outcome. CMR measures of vascular function are potential targets for interventions to reduce cardiovascular risk.</p
Coronary MR angiography at 3T: fat suppression versus water-fat separation
Objectives: To compare Dixon water-fat suppression with spectral pre-saturation with inversion recovery (SPIR) at 3T for coronary magnetic resonance angiography (MRA) and to demonstrate the feasibility of fat suppressed coronary MRA at 3T without administration of a contrast agent. Materials and methods: Coronary MRA with Dixon water-fat separation or with SPIR fat suppression was compared on a 3T scanner equipped with a 32-channel cardiac receiver coil. Eight healthy volunteers were examined. Contrast-to-noise ratio (CNR), signal-to-noise ratio (SNR), right coronary artery (RCA), and left anterior descending (LAD) coronary artery sharpness and length were measured and statistically compared. Two experienced cardiologists graded the visual image quality of reformatted Dixon and SPIR images (1: poor quality to 5: excellent quality). Results: Coronary MRA images in healthy volunteers showed improved contrast with the Dixon technique compared to SPIR (CNR blood-fat: Dixon = 14.9 ± 2.9 and SPIR = 13.9 ± 2.1; p = 0.08, CNR blood-myocardium: Dixon = 10.2 ± 2.7 and SPIR = 9.11 ± 2.6; p = 0.1). The Dixon method led to similar fat suppression (fat SNR with Dixon: 2.1 ± 0.5 vs. SPIR: 2.4 ± 1.2, p = 0.3), but resulted in significantly increased SNR of blood (blood SNR with Dixon: 19.9 ± 4.5 vs. SPIR: 15.5 ± 3.1, p < 0.05). This means the residual fat signal is slightly lower with the Dixon compared to the SIPR technique (although not significant), while the SNR of blood is significantly higher with the Dixon technique. Vessel sharpness of the RCA was similar for Dixon and SPIR (57 ± 7 % vs. 56 ± 9 %, p = 0.2), while the RCA visualized vessel length was increased compared to SPIR fat suppression (107 ± 21 vs. 101 ± 21 mm, p < 0.001). For the LAD, vessel sharpness (50 ± 13 % vs. 50 ± 7 %, p = 0.4) and vessel length (92 ± 46 vs. 90 ± 47 mm, p = 0.4) were similar with both techniques. Consequently, the Dixon technique resulted in an improved visual score of the coronary arteries in the water fat separated images of healthy subjects (RCA: 4.6 ± 0.5 vs. 4.1 ± 0.7, p = 0.01, LAD: 4.1 ± 0.7 vs. 3.5 ± 0.8, p = 0.007). Conclusions: Dixon water-fat separation can significantly improve coronary artery image quality without the use of a contrast agent at 3T
Lamina Cribrosa Microstructure in Nonhuman Primates With Naturally Occurring Peripapillary Retinal Nerve Fiber Layer Thinning
PURPOSE: The lamina cribrosa (LC) is hypothesized to be the site of initial axonal damage in glaucoma with the circumpapillary retinal nerve fiber layer thickness (RNFL-T) widely used as a standard metric for quantifying the glaucomatous damage. The purpose of this study was to determine in vivo, 3-dimensional (3D) differences in the microstructure of the LC in eyes of nonhuman primates (NHPs) with naturally occurring glaucoma.
METHODS: Spectral-domain optical coherence tomography (OCT) scans (Leica, Chicago, IL, USA) of the optic nerve head were acquired from a colony of 50 adult rhesus monkeys suspected of having high prevalence of glaucoma. The RNFL-T was analyzed globally and in quadrants using a semi-automated segmentation software. From a set of 100 eyes, 18 eyes with the thinnest global RNFL-T were selected as the study group and 18 eyes with RNFL-T values around the 50th percentile were used as controls. A previously described automated segmentation algorithm was used for LC microstructure analysis. Parameters included beam thickness, pore diameter and their ratio (beam-to-pore ratio [BPR]), pore area and shape parameters, beam and pore volume, and connective tissue volume fraction (CTVF; beam volume/total volume). The LC microstructure was analyzed globally and in the following volumetric sectors: quadrants, central and peripheral lamina, and three depth slabs (anterior, middle, and posterior).
RESULTS: Although no significant difference was detected between groups for age, weight, or disc size, the study group had significantly thinner RNFL than the control group (P \u3c 0.01). The study group had significantly smaller global and sectoral pore diameter and larger BPR compared with the control group. Across eyes, the global RNFL-T was associated positively with pore diameter globally. BPR and CTVF were significantly and negatively associated with the corresponding RNFL-T in the superior quadrant.
CONCLUSIONS: Global and sectoral microstructural differences were detected when comparing thin and normal RNFL-T eyes. Whether these LC differences are the cause of RNFL damage or the result of remodeling of the LC requires further investigation.
TRANSLATIONAL RELEVANCE: Our findings indicate structural alterations in the LC of NHP exhibiting natural thinning of the RNFL, a common characteristic of glaucomatous damage
Consensus Recommendation for Mouse Models of Ocular Hypertension to Study Aqueous Humor Outflow and Its Mechanisms.
Due to their similarities in anatomy, physiology, and pharmacology to humans, mice are a valuable model system to study the generation and mechanisms modulating conventional outflow resistance and thus intraocular pressure. In addition, mouse models are critical for understanding the complex nature of conventional outflow homeostasis and dysfunction that results in ocular hypertension. In this review, we describe a set of minimum acceptable standards for developing, characterizing, and utilizing mouse models of open-angle ocular hypertension. We expect that this set of standard practices will increase scientific rigor when using mouse models and will better enable researchers to replicate and build upon previous findings
- …