21 research outputs found
Functional Effects of the TMEM43 Ser358Leu Mutation in the Pathogenesis of Arrhythmogenic Right Ventricular Cardiomyopathy
Background: The Ser358Leu mutation in TMEM43, encoding an inner nuclear membrane protein, has been implicated in arrhythmogenic right ventricular cardiomyopathy (ARVC). The pathogenetic mechanisms of this mutation are poorly understood. Methods: To determine the frequency of TMEM43 mutations as a cause of ARVC, we screened 11 ARVC families for mutations in TMEM43 and five desmosomal genes previously implicated in the disease. Functional studies were performed in COS-7 cells transfected with wildtype, mutant, and 1:2 wildtype:mutant TMEM43 to determine the effect of the Ser358Leu mutation on the stability and cellular localization of TMEM43 and other nuclear envelope and desmosomal proteins, assessed by solubility assays and immunofluorescence imaging. mRNA expression was assessed of genes potentially affected by dysfunction of the nuclear lamina. Results: Three novel mutations in previously documented desmosomal genes, but no mutations in TMEM43, were identified. COS-7 cells transfected with mutant TMEM43 exhibited no change in desmosomal stability. Stability and nuclear membrane localization of mutant TMEM43 and of lamin B and emerin were normal. Mutant TMEM43 did not alter the expression of genes located on chromosome 13, previously implicated in nuclear envelope protein mutations leading to skeletal muscular dystrophies. Conclusions: Mutant TMEM43 exhibits normal cellular localization and does not disrupt integrity and localization of other nuclear envelope and desmosomal proteins. The pathogenetic role of TMEM43 mutations in ARVC remains uncertain
Recommended from our members
Cardiomyocyte BRAF and type 1 RAF inhibitors promote cardiomyocyte and cardiac hypertrophy in mice in vivo
The extracellular signal-regulated kinase 1/2 (ERK1/2) cascade promotes cardiomyocyte hypertrophy and is cardioprotective, with the three RAF kinases forming a node for signal integration. Our aims were to determine if BRAF is relevant for human heart failure, whether BRAF promotes cardiomyocyte hypertrophy, and if Type 1 RAF inhibitors developed for cancer (that paradoxically activate ERK1/2 at low concentrations: the “RAF paradox”) may have the same effect. BRAF was upregulated in heart samples from patients with heart failure compared with normal controls. We assessed the effects of activated BRAF in the heart using mice with tamoxifen-activated Cre for cardiomyocyte-specific knock-in of the activating V600E mutation into the endogenous gene. We used echocardiography to measure cardiac dimensions/function. Cardiomyocyte BRAFV600E induced cardiac hypertrophy within 10 d, resulting in increased ejection fraction and fractional shortening over 6 weeks. This was associated with increased cardiomyocyte size without significant fibrosis, consistent with compensated hypertrophy. The experimental Type 1 RAF inhibitor, SB590885, and/or encorafenib (a RAF inhibitor used clinically) increased ERK1/2 phosphorylation in cardiomyocytes, and promoted hypertrophy, consistent with a “RAF paradox” effect. Both promoted cardiac hypertrophy in mouse hearts in vivo, with increased cardiomyocyte size and no overt fibrosis. In conclusion, BRAF potentially plays an important role in human failing hearts, activation of BRAF is sufficient to induce hypertrophy, and Type 1 RAF inhibitors promote hypertrophy via the “RAF paradox”. Cardiac hypertrophy resulting from these interventions was not associated with pathological features, suggesting that Type 1 RAF inhibitors may be useful to boost cardiomyocyte function
Frataxin deficiency promotes endothelial senescence in pulmonary hypertension
The dynamic regulation of endothelial pathophenotypes in pulmonary hypertension (PH) remains undefined. Cellular senescence is linked to PH with intracardiac shunts; however, its regulation across PH subtypes is unknown. Since endothelial deficiency of iron-sulfur (Fe-S) clusters is pathogenic in PH, we hypothesized that a Fe-S biogenesis protein, frataxin (FXN), controls endothelial senescence. An endothelial subpopulation in rodent and patient lungs across PH subtypes exhibited reduced FXN and elevated senescence. In vitro, hypoxic and inflammatory FXN deficiency abrogated activity of endothelial Fe-S–containing polymerases, promoting replication stress, DNA damage response, and senescence. This was also observed in stem cell–derived endothelial cells from Friedreich’s ataxia (FRDA), a genetic disease of FXN deficiency, ataxia, and cardiomyopathy, often with PH. In vivo, FXN deficiency–dependent senescence drove vessel inflammation, remodeling, and PH, whereas pharmacologic removal of senescent cells in Fxn-deficient rodents ameliorated PH. These data offer a model of endothelial biology in PH, where FXN deficiency generates a senescent endothelial subpopulation, promoting vascular inflammatory and proliferative signals in other cells to drive disease. These findings also establish an endothelial etiology for PH in FRDA and left heart disease and support therapeutic development of senolytic drugs, reversing effects of Fe-S deficiency across PH subtypes
Functional effects of the <it>TMEM43 </it>Ser358Leu mutation in the pathogenesis of arrhythmogenic right ventricular cardiomyopathy
Abstract Background The Ser358Leu mutation in TMEM43, encoding an inner nuclear membrane protein, has been implicated in arrhythmogenic right ventricular cardiomyopathy (ARVC). The pathogenetic mechanisms of this mutation are poorly understood. Methods To determine the frequency of TMEM43 mutations as a cause of ARVC, we screened 11 ARVC families for mutations in TMEM43 and five desmosomal genes previously implicated in the disease. Functional studies were performed in COS-7 cells transfected with wildtype, mutant, and 1:2 wildtype:mutant TMEM43 to determine the effect of the Ser358Leu mutation on the stability and cellular localization of TMEM43 and other nuclear envelope and desmosomal proteins, assessed by solubility assays and immunofluorescence imaging. mRNA expression was assessed of genes potentially affected by dysfunction of the nuclear lamina. Results Three novel mutations in previously documented desmosomal genes, but no mutations in TMEM43, were identified. COS-7 cells transfected with mutant TMEM43 exhibited no change in desmosomal stability. Stability and nuclear membrane localization of mutant TMEM43 and of lamin B and emerin were normal. Mutant TMEM43 did not alter the expression of genes located on chromosome 13, previously implicated in nuclear envelope protein mutations leading to skeletal muscular dystrophies. Conclusions Mutant TMEM43 exhibits normal cellular localization and does not disrupt integrity and localization of other nuclear envelope and desmosomal proteins. The pathogenetic role of TMEM43 mutations in ARVC remains uncertain.</p
Specificity Protein 1-Mediated Promotion of CXCL12 Advances Endothelial Cell Metabolism and Proliferation in Pulmonary Hypertension
Pulmonary arterial hypertension (PAH) is a rare yet devastating and incurable disease with few treatment options. The underlying mechanisms of PAH appear to involve substantial cellular proliferation and vascular remodeling, causing right ventricular overload and eventual heart failure. Recent evidence suggests a significant seminal role of the pulmonary endothelium in the initiation and promotion of PAH. Our previous work identified elevated reactive oxygen species (ROS)-producing enzyme NADPH oxidase 1 (NOX1) in human pulmonary artery endothelial cells (HPAECs) of PAH patients promoting endothelial cell proliferation in vitro. In this study, we interrogated chemokine CXCL12′s (aka SDF-1) role in EC proliferation under the control of NOX1 and specificity protein 1 (Sp1). We report here that NOX1 can drive hypoxia-induced endothelial CXCL12 expression via the transcription factor Sp1 leading to HPAEC proliferation and migration. Indeed, NOX1 drove hypoxia-induced Sp1 activation, along with an increased capacity of Sp1 to bind cognate promoter regions in the CXCL12 promoter. Sp1 activation induced elevated expression of CXCL12 in hypoxic HPAECs, supporting downstream induction of expression at the CXCL12 promoter via NOX1 activity. Pathological levels of CXCL12 mimicking those reported in human PAH patient serum restored EC proliferation impeded by specific NOX1 inhibitor. The translational relevance of our findings is highlighted by elevated NOX1 activity, Sp1 activation, and CXCL12 expression in explanted lung samples from PAH patients compared to non-PAH controls. Analysis of phosphofructokinase, glucose-6-phosphate dehydrogenase, and glutaminase activity revealed that CXCL12 induces glutamine and glucose metabolism, which are foundational to EC cell proliferation. Indeed, in explanted human PAH lungs, demonstrably higher glutaminase activity was detected compared to healthy controls. Finally, infusion of recombinant CXCL12 into healthy mice amplified pulmonary arterial pressure, right ventricle remodeling, and elevated glucose and glutamine metabolism. Together these data suggest a central role for a novel NOX1-Sp1-CXCL12 pathway in mediating PAH phenotype in the lung endothelium
mTORC
Idiopathic pulmonary fibrosis (IPF) is a chronic, progressive, and usually lethal disease associated with aging. However, the molecular mechanisms of the aging process that contribute to the pathogenesis of IPF have not been elucidated. IPF is characterized by abundant foci of highly active fibroblasts and myofibroblasts resistant to apoptosis. Remarkably, the role of aging in the autophagy activity of lung fibroblasts and its relationship with apoptosis, as adaptive responses, has not been evaluated previously in this disease. In the present study, we analyzed the dynamics of autophagy in primary lung fibroblasts from IPF compared to young and age-matched normal lung fibroblasts. Our results showed that aging contributes for a lower induction of autophagy on basal conditions and under starvation which is mediated by mTOR pathway activation. Treatment with rapamycin and PP242, that target the PI3K/AKT/mTOR signaling pathway, modified starvation-induced autophagy and apoptosis in IPF fibroblasts. Interestingly, we found a persistent activation of this pathway under starvation that contributes to the apoptosis resistance in IPF fibroblasts. These findings indicate that aging affects adaptive responses to stress decreasing autophagy through activation of mTORC1 in lung fibroblasts. The activation of this pathway also contributes to the resistance to cell death in IPF lung fibroblasts
Recommended from our members
mTORC1 activation decreases autophagy in aging and idiopathic pulmonary fibrosis and contributes to apoptosis resistance in IPF fibroblasts
Idiopathic pulmonary fibrosis (IPF) is a chronic, progressive, and usually lethal disease associated with aging. However, the molecular mechanisms of the aging process that contribute to the pathogenesis of IPF have not been elucidated. IPF is characterized by abundant foci of highly active fibroblasts and myofibroblasts resistant to apoptosis. Remarkably, the role of aging in the autophagy activity of lung fibroblasts and its relationship with apoptosis, as adaptive responses, has not been evaluated previously in this disease. In the present study, we analyzed the dynamics of autophagy in primary lung fibroblasts from IPF compared to young and age-matched normal lung fibroblasts. Our results showed that aging contributes for a lower induction of autophagy on basal conditions and under starvation which is mediated by mTOR pathway activation. Treatment with rapamycin and PP242, that target the PI3K/AKT/mTOR signaling pathway, modified starvation-induced autophagy and apoptosis in IPF fibroblasts. Interestingly, we found a persistent activation of this pathway under starvation that contributes to the apoptosis resistance in IPF fibroblasts. These findings indicate that aging affects adaptive responses to stress decreasing autophagy through activation of mTORC1 in lung fibroblasts. The activation of this pathway also contributes to the resistance to cell death in IPF lung fibroblasts
Sympathetic Neuronal Activation Triggers Myeloid Progenitor Proliferation and Differentiation
There is a growing body of research on the neural control of immunity and inflammation. However, it is not known whether the nervous system can regulate the production of inflammatory myeloid cells from hematopoietic progenitor cells in disease conditions. Myeloid cell numbers in diabetic patients were strongly correlated with plasma concentrations of norepinephrine, suggesting the role of sympathetic neuronal activation in myeloid cell production. The spleens of diabetic patients and mice contained higher numbers of tyrosine hydroxylase (TH)-expressing leukocytes that produced catecholamines. Granulocyte macrophage progenitors (GMPs) expressed the β2 adrenergic receptor, a target of catecholamines. Ablation of splenic sympathetic neuronal signaling using surgical, chemical, and genetic approaches diminished GMP proliferation and myeloid cell development. Finally, mice lacking TH-producing leukocytes had reduced GMP proliferation, resulting in diminished myelopoiesis. Taken together, our study demonstrates that catecholamines produced by leukocytes and sympathetic nerve termini promote GMP proliferation and myeloid cell development. Neural control of immunity and inflammation has been reported. Vasamsetti and colleagues demonstrate that the sympathetic nervous system controls the development of inflammatory myeloid cells from their progenitors in inflammatory conditions
Interleukin-6 mediates neutrophil mobilization from bone marrow in pulmonary hypertension
Myeloid cells, such as neutrophils, are produced in the bone marrow in high quantities and are important in the pathogenesis of vascular diseases such as pulmonary hypertension (PH). Although neutrophil recruitment into sites of inflammation has been well studied, the mechanisms of neutrophil egress from the bone marrow are not well understood. Using computational flow cytometry, we observed increased neutrophils in the lungs of patients and mice with PH. Moreover, we found elevated levels of IL-6 in the blood and lungs of patients and mice with PH. We observed that transgenic mice overexpressing Il-6 in the lungs displayed elevated neutrophil egress from the bone marrow and exaggerated neutrophil recruitment to the lungs, resulting in exacerbated pulmonary vascular remodeling, and dysfunctional hemodynamics. Mechanistically, we found that IL-6-induced neutrophil egress from the bone marrow was dependent on interferon regulatory factor 4 (IRF-4)-mediated CX3CR1 expression in neutrophils. Consequently, Cx3cr1 genetic deficiency in hematopoietic cells in Il-6-transgenic mice significantly reduced neutrophil egress from bone marrow and decreased neutrophil counts in the lungs, thus ameliorating pulmonary remodeling and hemodynamics. In summary, these findings define a novel mechanism of IL-6-induced neutrophil egress from the bone marrow and reveal a new therapeutic target to curtail neutrophil-mediated inflammation in pulmonary vascular disease