13,438 research outputs found

    Block-Structured Supermarket Models

    Full text link
    Supermarket models are a class of parallel queueing networks with an adaptive control scheme that play a key role in the study of resource management of, such as, computer networks, manufacturing systems and transportation networks. When the arrival processes are non-Poisson and the service times are non-exponential, analysis of such a supermarket model is always limited, interesting, and challenging. This paper describes a supermarket model with non-Poisson inputs: Markovian Arrival Processes (MAPs) and with non-exponential service times: Phase-type (PH) distributions, and provides a generalized matrix-analytic method which is first combined with the operator semigroup and the mean-field limit. When discussing such a more general supermarket model, this paper makes some new results and advances as follows: (1) Providing a detailed probability analysis for setting up an infinite-dimensional system of differential vector equations satisfied by the expected fraction vector, where "the invariance of environment factors" is given as an important result. (2) Introducing the phase-type structure to the operator semigroup and to the mean-field limit, and a Lipschitz condition can be obtained by means of a unified matrix-differential algorithm. (3) The matrix-analytic method is used to compute the fixed point which leads to performance computation of this system. Finally, we use some numerical examples to illustrate how the performance measures of this supermarket model depend on the non-Poisson inputs and on the non-exponential service times. Thus the results of this paper give new highlight on understanding influence of non-Poisson inputs and of non-exponential service times on performance measures of more general supermarket models.Comment: 65 pages; 7 figure

    On the global warping of a thin self-gravitating near Keplerian gaseous disk with application to the disk in NGC 4258

    Full text link
    On the global warping of a thin self-gravitating near Keplerian gaseous disk with application to the disk in NGC 4258Comment: 36 pages (including 4 figures), Latex, to appear in Ap

    A Matrix-Analytic Solution for Randomized Load Balancing Models with Phase-Type Service Times

    Full text link
    In this paper, we provide a matrix-analytic solution for randomized load balancing models (also known as \emph{supermarket models}) with phase-type (PH) service times. Generalizing the service times to the phase-type distribution makes the analysis of the supermarket models more difficult and challenging than that of the exponential service time case which has been extensively discussed in the literature. We first describe the supermarket model as a system of differential vector equations, and provide a doubly exponential solution to the fixed point of the system of differential vector equations. Then we analyze the exponential convergence of the current location of the supermarket model to its fixed point. Finally, we present numerical examples to illustrate our approach and show its effectiveness in analyzing the randomized load balancing schemes with non-exponential service requirements.Comment: 24 page

    Control of Low-Speed Turbulent Separated Flow Over a Backward-Facing Ramp

    Get PDF
    The relative performance and flow phenomena associated with several devices for controlling turbulent separated flow were investigated at low speeds. Relative performance of the devices was examined for flow over a curved, backward-facing ramp in a wind tunnel, and the flow phenomena were examined in a water tunnel using dye-flow visualization. Surface static pressure measurements and oil-flow visualization results from the wind tunnel tests indicated that transverse grooves, longitudinal grooves, submerged vortex generators, vortex generator jets (VGJ’s), Viets’ fluidic flappers, elongated arches +a + a (positive angle of attack), and large-eddy breakup devices (LEBU’s) +a + a placed near the baseline separation location reduce flow separation and increase pressure recovery. Spanwise cylinders reduce flow separation but decrease pressure recovery downstream. Riblets, passive porous surfaces, swept grooves, Helmholtz resonators, and arches and LEBU’s with a \u3c 0° had no significant effect in reducing the extent of the separation region. Wall-cooling computations indicated that separation delay on a partially-cooled ramp is nearly the same as on a fully-cooled ramp, while minimizing the frictional drag increase associated with the wall cooling process. Dye-flow visualization tests in the water tunnel indicated that wishbone vortex generators in the forward orientation shed horseshoe vortices; wishbone vortex generators oriented in the reverse direction and doublet vortex generators shed streamwise counterrotating vortices; a spanwise cylinder located near the wall and LEBU’s at a = —10° produced eddies or transverse vortices which rotated with the same sign as the mean vorticity in a turbulent boundary layer; and the most effective VGJ’s produced streamwise co-rotating vortices. Comparative wind-tunnel test results indicated that transferring momentum from the outer region of a turbulent boundary layer through the action of embedded streamwise vortices is more effective than by transverse vortices for the separation control application studied herein

    Control of low-speed turbulent separated flow over a backward-facing ramp

    Get PDF
    The relative performance and flow phenomena associated with several devices for controlling turbulent separated flow were investigated at low speeds. Relative performance of the devices was examined for flow over a curved, backward-facing ramp in a wind tunnel, and the flow phenomena were examined in a water tunnel using dye-flow visualization. Surface static pressure measurements and oil-flow visualization results from the wind tunnel tests indicated that transverse grooves, longitudinal grooves, submerged vortex generators, vortex generator jets (VGJ's), Viets' fluidic flappers, elongated arches at positive angle of attack, and large-eddy breakup devices (LEBU's) at positive angle of attack placed near the baseline separation location reduce flow separation and increase pressure recovery. Spanwise cylinders reduce flow separation but decrease pressure recovery downstream. Riblets, passive porous surfaces, swept grooves, Helmholtz resonators, and arches and LEBU's with angle of attack less than or = 0 degrees had no significant effect in reducing the extent of the separation region. Wall-cooling computations indicated that separation delay on a partially-cooled ramp is nearly the same as on a fully-cooled ramp, while minimizing the frictional drag increase associated with the wall cooling process. Dry-flow visualization tests in the water tunnel indicated that wishbone vortex generators in the forward orientation shed horseshoe vortices; wishbone vortex generators oriented in the reverse direction and doublet vortex generators shed streamwise counterrotating vortices; a spanewise cylinder located near the wall and LEBU's at angle of attack = -10 degrees produced eddies or transverse vortices which rotated with the same sign as the mean vorticity in a turbulent boundary layer; and the most effective VGJ's produced streamwise co-rotating vortices. Comparative wind-tunnel test results indicated that transferring momentum from the outer region of a turbulent boundary layer through the action of embedded streamwise vortices is more effective than by transverse vortices for the separation control application studied herein
    • …
    corecore