182 research outputs found

    Freezing and pressure-driven flow of solid helium in Vycor

    Full text link
    The recent torsional oscillator results of Kim and Chan suggest a supersolid phase transition in solid He-4 confined in Vycor. We have used a capacitive technique to directly monitor density changes for helium confined in Vycor at low temperature and have used a piezoelectrically driven diaphragm to study the pressure-induced flow of solid helium into the Vycor pores. Our measurements showed no indication of a mass redistribution in the Vycor that could mimic supersolid decoupling and put an upper limit of about 0.003 um/s on any pressure-induced supersolid flow in the pores of Vycor.Comment: 5 pages, 4 figure

    Intrinsic and dislocation induced elastic behavior of solid helium

    Full text link
    Recent experiments showed that the shear modulus of solid 4He stiffens in the same temperature range (below 200 mK) where mass decoupling and supersolidity have been inferred from torsional oscillator measurements. The two phenomena are clearly related and crystal defects, particularly dislocations, appear to be involved in both. We have studied the effects of annealing and the effects of applying large stresses on the elastic properties of solid 4He, using both acoustic resonances and direct low-frequency and low-amplitude measurements of the shear modulus. Both annealing and stressing affect the shear modulus, as expected if dislocations are responsible. However, it is the high temperature modulus which is affected; the low temperature behavior is unchanged and appears to reflect the intrinsic modulus of solid helium. We interpret this behavior in terms of dislocations which are pinned by isotopic 3He impurities at low temperatures and so have no effect on the shear modulus. At higher temperatures they become mobile and weaken the solid. Stressing the crystal at low temperatures appears to introduce new defects or additional pinning sites for the dislocation network but these effects can be reversed by heating the crystal above 500 mK. This is in contrast to dislocations produced during crystal growth, which are only annealed at temperatures close to melting

    Non-linear Elastic Response in Solid Helium: critical velocity or strain

    Full text link
    Torsional oscillator experiments show evidence of mass decoupling in solid 4He. This decoupling is amplitude dependent, suggesting a critical velocity for supersolidity. We observe similar behavior in the elastic shear modulus. By measuring the shear modulus over a wide frequency range, we can distinguish between an amplitude dependence which depends on velocity and one which depends on some other parameter like displacement. In contrast to the torsional oscillator behavior, the modulus depends on the magnitude of stress, not velocity. We interpret our results in terms of the motion of dislocations which are weakly pinned by 3He impurities but which break away when large stresses are applied

    Pressure-driven flow of solid helium

    Full text link
    The recent torsional oscillator results of Kim and Chan suggest a supersolid phase transition in solid 4He. We have used a piezoelectrically driven diaphragm to study the flow of solid helium through an array of capillaries. Our measurements showed no indication of low temperature flow, placing stringent restrictions on supersolid flow in response to a pressure difference. The average flow speed at low temperatures was less than 1.2x10-14 m/s, corresponding to a supersolid velocity at least 7 orders of magnitude smaller than the critical velocities inferred from the torsional oscillator measurements.Comment: 4 pages, 3 figure

    Critical dislocation speed in helium-4 crystals

    Get PDF
    Our experiments show that in 4^4He crystals, the binding of 3^3He impurities to dislocations does not necessarily imply their pinning. Indeed, in these crystals, there are two different regimes of the motion of dislocations when impurities bind to them. At lowdriving strain ϵ\epsilon and frequency ω\omega, where the dislocation speed is less than a critical value (45 μ\mum/s), dislocations and impurities apparently move together. Impurities really pin the dislocations only at higher values of ω\omega. The critical speed separating the two regimes is two orders of magnitude smaller than the average speed of free 3^3He impurities in the bulk crystal lattice.We obtained this result by studying the dissipation of dislocation motion as a function of the frequency and amplitude of a driving strain applied to a crystal at low temperature. Our results solve an apparent contradiction between some experiments, which showed a frequency-dependent transition temperature from a soft to a stiff state, and other experiments or models where this temperature was assumed to be independent of frequency. The impurity pinning mechanism for dislocations appears to be more complicated than previously assumed

    Deformation of Silica Aerogel During Fluid Adsorption

    Full text link
    Aerogels are very compliant materials - even small stresses can lead to large deformations. In this paper we present measurements of the linear deformation of high porosity aerogels during adsorption of low surface tension fluids, performed using a Linear Variable Differential Transformer (LVDT). We show that the degree of deformation of the aerogel during capillary condensation scales with the surface tension, and extract the bulk modulus of the gel from the data. Furthermore we suggest limits on safe temperatures for filling and emptying low density aerogels with helium.Comment: 8 pages, 5 figures, submitted to PR

    Satisfaction rating of core and higher surgical training in Wales

    Get PDF
    • …
    corecore