183 research outputs found

    Keys to Eukaryality: Planctomycetes and Ancestral Evolution of Cellular Complexity

    Get PDF
    Planctomycetes are known to display compartmentalization via internal membranes, thus resembling eukaryotes. Significantly, the planctomycete Gemmata obscuriglobus has not only a nuclear region surrounded by a double-membrane, but is also capable of protein uptake via endocytosis. In order to clearly analyze implications for homology of their characters with eukaryotes, a correct understanding of planctomycete structure is an essential starting point. Here we outline the major features of such structure necessary for assessing the case for or against homology with eukaryote cell complexity. We consider an evolutionary model for cell organization involving reductive evolution of Planctomycetes from a complex proto-eukaryote-like last universal common ancestor, and evaluate alternative models for origins of the unique planctomycete cell plan. Overall, the structural and molecular evidence is not consistent with convergent evolution of eukaryote-like features in a bacterium and favors a homologous relationship of Planctomycetes and eukaryotes

    Gene discovery within the planctomycete division of the domain Bacteria using sequence tags from genomic DNA libraries

    Get PDF
    BACKGROUND: The planctomycetes comprise a distinct group of the domain Bacteria, forming a separate division by phylogenetic analysis. The organization of their cells into membrane-defined compartments including membrane-bounded nucleoids, their budding reproduction and complete absence of peptidoglycan distinguish them from most other Bacteria. A random sequencing approach was applied to the genomes of two planctomycete species, Gemmata obscuriglobus and Pirellula marina, to discover genes relevant to their cell biology and physiology. RESULTS: Genes with a wide variety of functions were identified in G. obscuriglobus and Pi. marina, including those of metabolism and biosynthesis, transport, regulation, translation and DNA replication, consistent with established phenotypic characters for these species. The genes sequenced were predominantly homologous to those in members of other divisions of the Bacteria, but there were also matches with nuclear genomic genes of the domain Eukarya, genes that may have appeared in the planctomycetes via horizontal gene transfer events. Significant among these matches are those with two genes atypical for Bacteria and with significant cell-biology implications - integrin alpha-V and inter-alpha-trypsin inhibitor protein - with homologs in G. obscuriglobus and Pi. marina respectively. CONCLUSIONS: The random-sequence-tag approach applied here to G. obscuriglobus and Pi. marina is the first report of gene recovery and analysis from members of the planctomycetes using genome-based methods. Gene homologs identified were predominantly similar to genes of Bacteria, but some significant best matches to genes from Eukarya suggest that lateral gene transfer events between domains may have involved this division at some time during its evolution

    The Planctomycetes: Emerging Models for Microbial Ecology; Evolution and Cell Biology

    Get PDF
    The planctomycetes are budding bacteria forming one of the phylogenetically distinct major phyla of the domain Bacteria defined by 16S rRNA sequence analysis. They are distinctive phenotypically in their budding reproduction and the complete absence of peptidoglycan in their proteinaceous cell walls. Planctomycetes are proving to be of increasing relevance to microbial ecology, due to their ubiquitous distribution in aquatic including marine habitats, to molecular evolution due to their separate and potentially deep-branching position within the Bacteria and potential relations to chlamydiae, and to cell biology, due to their unusual cell wall composition for Bacteria, gene organization, and the occurrence in Gemmata obscuriglobus of a membrane-bounded nucleoid with implications for understanding the eukaryote nucleus and its evolution. All these aspects of the emerging significance of the planctomycetes are reviewed here

    Molecular and Ultrastructural Confirmation of Classification of ATCC 35122 as a Strain of Pirellula staleyi

    Get PDF
    A freshwater isolate from Campus Lake, Baton Rouge, LA, USA, strain ATCC 35122 (= ICPB 4362 = Schmidt CLPM White = Tekniepe BT2 white), which had been proposed as a putative reference strain for 'Planctomyces staleyi' (later reclassified as Pirellula staleyi), has been re-examined to establish its relationship to the type strain of Pirellula staleyi, ATCC 27377T. 16S rRNA sequencing confirms its very close relationship to ATCC 27377T and its membership of the order Planctomycetales. Ultrastructural characteristics are also consistent with its membership of the planctomycetes and of the genus Pirellula. These characteristics include polar crateriform structures and the occurrence of the unique internal, single- membrane-bounded compartment enclosing the nucleoid and ribosome-like particles, the pirellulosome, and a polar cap region. Cells of strain ATCC 35122 often displayed pointed, hump-like protrusions opposite each other on the cell, constituting prosthecae, and these were also found to be present on cells of strain ATCC 27377T. The original identification of ATCC 35122 as a strain of Pirellula staleyi is confirmed on both molecular and phenotypic grounds

    Spectral and Timing Properties of IGR J17091-3624 in the Rising Hard State During its 2016 Outburst

    Get PDF
    We present a spectral and timing study of the NuSTAR and Swift observations of the black hole candidate IGR J17091-3624 in the hard state during its outburst in 2016. Disk reflection is detected in each of the NuSTAR spectra taken in three epochs. Fitting with relativistic reflection models reveals that the accretion disk is truncated during all epochs with Rin>10 rgR_{\rm in}>10~r_{\rm g}, with the data favoring a low disk inclination of 3040\sim 30^{\circ}-40^{\circ}. The steepening of the continuum spectra between epochs is accompanied by a decrease in the high energy cut-off: the electron temperature kTekT_{\rm e} drops from 64\sim 64 keV to 26\sim 26 keV, changing systematically with the source flux. We detect type-C QPOs in the power spectra with frequency varying between 0.131 Hz and 0.327 Hz. In addition, a secondary peak is found in the power spectra centered at about 2.3 times the QPO frequency during all three epochs. The nature of this secondary frequency is uncertain, however a non-harmonic origin is favored. We investigate the evolution of the timing and spectral properties during the rising phase of the outburst and discuss their physical implications.Comment: 11 pages, 9 figures, accepted by Ap

    A canonical FtsZ protein in Verrucomicrobium spinosum, a member of the Bacterial phylum Verrucomicrobia that also includes tubulin-producing Prosthecobacter species

    Get PDF
    BACKGROUND: The origin and evolution of the homologous GTP-binding cytoskeletal proteins FtsZ typical of Bacteria and tubulin characteristic of eukaryotes is a major question in molecular evolutionary biology. Both FtsZ and tubulin are central to key cell biology processes – bacterial septation and cell division in the case of FtsZ and in the case of tubulins the function of microtubules necessary for mitosis and other key cytoskeleton-dependent processes in eukaryotes. The origin of tubulin in particular is of significance to models for eukaryote origins. Most members of domain Bacteria possess FtsZ, but bacteria in genus Prosthecobacter of the phylum Verrucomicrobia form a key exception, possessing tubulin homologs BtubA and BtubB. It is therefore of interest to know whether other members of phylum Verrucomicrobia possess FtsZ or tubulin as their FtsZ-tubulin gene family representative. RESULTS: Verrucomicrobium spinosum, a member of Phylum Verrucomicrobia of domain Bacteria, has been found to possess a gene for a protein homologous to the cytoskeletal protein FtsZ. The deduced amino acid sequence has sequence signatures and predicted secondary structure characteristic for FtsZ rather than tubulin, but phylogenetic trees and sequence analysis indicate that it is divergent from all other known FtsZ sequences in members of domain Bacteria. The FtsZ gene of V. spinosum is located within a dcw gene cluster exhibiting gene order conservation known to contribute to the divisome in other Bacteria and comparable to these clusters in other Bacteria, suggesting a similar functional role. CONCLUSION: Verrucomicrobium spinosum has been found to possess a gene for a protein homologous to the cytoskeletal protein FtsZ. The results suggest the functional as well as structural homology of the V. spinosum FtsZ to the FtsZs of other Bacteria implying its involvement in cell septum formation during division. Thus, both bacteria-like FtsZ and eukaryote-like tubulin cytoskeletal homologs occur in different species of the phylum Verrucomicrobia of domain Bacteria, a result with potential major implications for understanding evolution of tubulin-like cytoskeletal proteins and the origin of eukaryote tubulins

    Pirellulosomes: a new type of membrane-bounded cell compartment in planctomycete bacteria of the genus Pirellula

    Get PDF
    A distinct type of cellular organization was found in two species of the planctomycete genus Pirellula, Pirellula marina and Pirellula staleyi. Both species possess two distinct regions within the cell which are separated by a single membrane. The major region of the cell, the pirellulosome, contains the fibrillar condensed nucleoid. The other area, the polar cap region, forms a continuous layer surrounding the entire pirellulosome and displays a cap of asymmetrically distributed material at one cell pole. Immuno- and cytochemical-labelling of P. marina demonstrated that DNA is located exclusively within the pirellulosome; cell RNA is concentrated in the pirellulosome, with some RNA also located in the polar cap region

    Broadband X-ray Properties of the Gamma-ray Binary 1FGL J1018.6-5856

    Get PDF
    We report on NuSTAR, XMM-Newton and Swift observations of the gamma-ray binary 1FGL J1018.6-5856. We measure the orbital period to be 16.544+/-0.008 days using Swift data spanning 1900 days. The orbital period is different from the 2011 gamma-ray measurement which was used in the previous X-ray study of An et al. (2013) using ~400 days of Swift data, but is consistent with a new gamma-ray solution reported in 2014. The light curve folded on the new period is qualitatively similar to that reported previously, having a spike at phase 0 and broad sinusoidal modulation. The X-ray flux enhancement at phase 0 occurs more regularly in time than was previously suggested. A spiky structure at this phase seems to be a persistent feature, although there is some variability. Furthermore, we find that the source flux clearly correlates with the spectral hardness throughout all orbital phases, and that the broadband X-ray spectra measured with NuSTAR, XMM-Newton, and Swift are well fit with an unbroken power-law model. This spectrum suggests that the system may not be accretion-powered.Comment: 8 pages, 4 figures. Accepted for publication in Ap

    NuSTAR discovery of an unusually steady long-term spin-up of the Be binary 2RXP J130159.6-635806

    Get PDF
    We present spectral and timing analysis of NuSTAR observations of the accreting X-ray pulsar 2RXP J130159.6-635806. The source was serendipitously observed during a campaign focused on the gamma-ray binary PSR B1259-63 and was later targeted for a dedicated observation. The spectrum has a typical shape for accreting X-ray pulsars, consisting of a simple power law with an exponential cutoff starting at ~7 keV with a folding energy of E_fold=~18 keV. There is also an indication of the presence of a 6.4 keV iron line in the spectrum at the ~3 sigma significance level. NuSTAR measurements of the pulsation period reveal that the pulsar has undergone a strong and steady spin-up for the last 20 years. The pulsed fraction is estimated to be ~80%, and is constant with energy up to 40 keV. The power density spectrum shows a break towards higher frequencies relative to the current spin period. This, together with steady persistent luminosity, points to a long-term mass accretion rate high enough to bring the pulsar out of spin equilibrium.Comment: 13 pages, 7 figures, accepted for publication in The Astrophysical Journa

    Spectral and Timing Analysis of the accretion-powered pulsar 4U 1626-67 observed with Suzaku and NuSTAR

    Get PDF
    We present an analysis of the spectral shape and pulse profile of the accretion-powered pulsar 4U 1626-67 observed with Suzaku and NuSTAR during a spin-up state. The pulsar, which experienced a torque reversal to spin-up in 2008, has a spin period of 7.7 s. Comparing the phase-averaged spectra obtained with Suzaku in 2010 and with NuSTAR in 2015, we find that the spectral shape changed between the two observations: the 3-10 keV flux increased by 5% while the 30-60 keV flux decreased significantly by 35%. Phase-averaged and phase-resolved spectral analysis shows that the continuum spectrum observed by NuSTAR is well described by an empirical NPEX continuum with an added broad Gaussian emission component around the spectral peak at 20 keV. Taken together with the observed Pdot value obtained from Fermi/GBM, we conclude that the spectral change between the Suzaku and NuSTAR observations was likely caused by an increase of the accretion rate. We also report the possible detection of asymmetry in the profile of the fundamental cyclotron line. Furthermore, we present a study of the energy-resolved pulse profiles using a new relativistic ray tracing code, where we perform a simultaneous fit to the pulse profiles assuming a two-column geometry with a mixed pencil- and fan-beam emission pattern. The resulting pulse profile decompositions enable us to obtain geometrical parameters of accretion columns (inclination, azimuthal and polar angles) and a fiducial set of beam patterns. This information is important to validate the theoretical predictions from radiation transfer in a strong magnetic field.Comment: 19 pages, 14 figures, Accepted for publication in ApJ on May 5, 201
    corecore