2 research outputs found

    Assessment of cardiac function during mechanical circulatory support: the quest for a suitable clinical index.

    No full text
    A new index to assess left ventricular (LV) function in patients implanted with continuous flow left-ventricular assist devices (LVADs) is proposed. Derived from the pump flow signal, this index is defined as the coefficient (k) of the semilogarithmic relationship between "pseudo-ejection" fraction (pEF) and the volume discharged by the pump in diastole, (V d). pEF is defined as the ratio of the "pseudo-stroke volume" (pSV) to V d. The pseudo-stroke volume is the difference between V d and the volume discharged by the pump in systole (V s), both obtained by integrating pump flow with respect to time in a cardiac cycle. k was compared in-vivo with others two indices: the LV pressure-based index, M(TP), and the pump flow-based index, I(Q). M(TP) is the slope of the linear regression between the "triple-product" and end-diastolic pressure, EDP. The triple-product, TP = LV SP.dP/dt(max). HR, is the product of LV systolic pressure, maximum time-derivative of LV pressure, and heart rate. I(Q) is the slope of the linear regression between maximum time-derivative of pump flow, dQ/dt(max), and pump flow peak-to-peak amplitude variation, Q(P2P). To test the response of k to contractile state changes, contractility was altered through pharmacological interventions. The absolute value of k decreased from 1.354 ± 0.25 (baseline) to 0.685 ± 0.21 after esmolol infusion. The proposed index is sensitive to changes in inotropic state, and has the potential to be used clinically to assess contractile function of patients implanted with VAD.</p

    Simulation of Dilated Heart Failure with Continuous Flow Circulatory Support

    No full text
    Lumped parameter models have been employed for decades to simulate important hemodynamic couplings between a left ventricular assist device (LVAD) and the native circulation. However, these studies seldom consider the pathological descending limb of the Frank-Starling response of the overloaded ventricle. This study introduces a dilated heart failure model featuring a unimodal end systolic pressure-volume relationship (ESPVR) to address this critical shortcoming. The resulting hemodynamic response to mechanical circulatory support are illustrated through numerical simulations of a rotodynamic, continuous flow ventricular assist device (cfVAD) coupled to systemic and pulmonary circulations with baroreflex control. The model further incorporated septal interaction to capture the influence of left ventricular (LV) unloading on right ventricular function. Four heart failure conditions were simulated (LV and bi-ventricular failure with/without pulmonary hypertension) in addition to normal baseline. Several metrics of LV function, including cardiac output and stroke work, exhibited a unimodal response whereby initial unloading improved function, and further unloading depleted preload reserve thereby reducing ventricular output. The concept ofextremal loading was introduced to reflect the loading condition in which the intrinsic LV stroke work is maximized. Simulation of bi-ventricular failure with pulmonary hypertension revealed inadequacy of LV support alone. These simulations motivate the implementation of an extremum tracking feedback controller to potentially optimize ventricular recovery.</p
    corecore