5 research outputs found

    A selective role for receptor activity‐modifying protein in sub‐chronic action of the amylin selective receptor agonist NN1213 compared to salmon calcitonin on body weight and food intake in male mice

    Full text link
    The role of receptor activity-modifying proteins (RAMPs) in modulating the pharmacological effects of an amylin receptor selective agonist (NN1213) or the dual amylin-calcitonin receptor agonist (DACRA), salmon calcitonin (sCT), was tested in three RAMP KO mouse models, RAMP1, RAMP3 and RAMP1/3 KO. Male wild-type (WT) and knockout (KO) littermate mice were fed a 45% high-fat diet for 20 weeks prior to the 3-week treatment period. A decrease in body weight after NN1213 was observed in all WT mice, whereas sCT had no effect. The absence of RAMP1 had no significant effect on NN1213 efficacy, and sCT was still inactive. However, the absence of RAMP3 impeded NN1213 efficacy but improved sCT efficacy. Similar results were observed in RAMP1/3 KO suggesting that the amylin receptor 3 (AMY3 = CTR + RAMP3) is necessary for NN1213's maximal action on body weight and food intake and that the lack of AMY3 allowed sCT to be active. These results suggest that the chronic use of DACRA such as sCT can have unfavourable effect on body weight loss in mice (which differs from the situation in rats), whereas the use of the amylin receptor selective agonist does not. AMY3 seems to play a crucial role in modulating the action of these two compounds, but in opposite directions. The assessment of a long-term effect of amylin and DACRA in different rodent models is necessary to understand potential physiological beneficial and unfavourable effects on weight loss before its transition to clinical trials

    Nontranscriptional modulation of intracellular Ca2+ signaling by ligand stimulated thyroid hormone receptor

    Get PDF
    Thyroid hormone 3,5,3′-tri-iodothyronine (T3) binds and activates thyroid hormone receptors (TRs). Here, we present evidence for a nontranscriptional regulation of Ca2+ signaling by T3-bound TRs. Treatment of Xenopus thyroid hormone receptor beta subtype A1 (xTRβA1) expressing oocytes with T3 for 10 min increased inositol 1,4,5-trisphosphate (IP3)-mediated Ca2+ wave periodicity. Coexpression of TRβA1 with retinoid X receptor did not enhance regulation. Deletion of the DNA binding domain and the nuclear localization signal of the TRβA1 eliminated transcriptional activity but did not affect the ability to regulate Ca2+ signaling. T3-bound TRβA1 regulation of Ca2+ signaling could be inhibited by ruthenium red treatment, suggesting that mitochondrial Ca2+ uptake was required for the mechanism of action. Both xTRβA1 and the homologous shortened form of rat TRα1 (rTRαΔF1) localized to the mitochondria and increased O2 consumption, whereas the full-length rat TRα1 did neither. Furthermore, only T3-bound xTRβA1 and rTRαΔF1 affected Ca2+ wave activity. We conclude that T3-bound mitochondrial targeted TRs acutely modulate IP3-mediated Ca2+ signaling by increasing mitochondrial metabolism independently of transcriptional activity
    corecore