25 research outputs found

    Nanohole Structuring for Improved Performance of Hydrogenated Amorphous Silicon Photovoltaics

    No full text
    While low hole mobilities limit the current collection and efficiency of hydrogenated amorphous silicon (a-Si:H) photovoltaic devices, attempts to improve mobility of the material directly have stagnated. Herein, we explore a method of utilizing nanostructuring of a-Si:H devices to allow for improved hole collection in thick absorber layers. This is achieved by etching an array of 150 nm diameter holes into intrinsic a-Si:H and then coating the structured material with p-type a-Si:H and a conformal zinc oxide transparent conducting layer. The inclusion of these nanoholes yields relative power conversion efficiency (PCE) increases of ∼45%, from 7.2 to 10.4% PCE for small area devices. Comparisons of optical properties, time-of-flight mobility measurements, and internal quantum efficiency spectra indicate this efficiency is indeed likely occurring from an improved collection pathway provided by the nanostructuring of the devices. Finally, we estimate that through modest optimizations of the design and fabrication, PCEs of beyond 13% should be obtainable for similar devices

    Structural origins of intrinsic stress in amorphous silicon thin films

    No full text
    Hydrogenated amorphous silicon (a-Si:H) refers to a broad class of atomic configurations, sharing a lack of long-range order, but varying significantly in material properties, including optical constants, porosity, hydrogen content, and intrinsic stress. It has long been known that deposition conditions affect microstructure, but much work remains to uncover the correlation between these parameters and their influence on electrical, mechanical, and optical properties critical for high-performance a-Si:H photovoltaic devices. We synthesize and augment several previous models of deposition phenomena and ion bombardment, developing a refined model correlating plasma-enhanced chemical vapor deposition conditions (pressure and discharge power and frequency) to the development of intrinsic stress in thin films. As predicted by the model presented herein, we observe that film compressive stress varies nearly linearly with bombarding ion momentum and with a (−1/4) power dependence on deposition pressure, that tensile stress is proportional to a reduction in film porosity, and the net film intrinsic stress results from a balance between these two forces. We observe the hydrogen-bonding configuration to evolve with increasing ion momentum, shifting from a void-dominated configuration to a silicon-monohydride configuration. Through this enhanced understanding of the structure-property-process relation of a-Si:H films, improved tunability of optical, mechanical, structural, and electronic properties should be achievable.National Science Foundation (U.S.) (award ECS- 0335765.
    corecore