36 research outputs found

    Study of fungicidal properties of colloidal silver nanoparticles (AgNPs) on trout egg pathogen, Saprolegnia sp.

    Get PDF
    Silver nanoparticles (AgNPs) are known to have bactericidal and fungicidal effects. Since, there is few information available on the interaction of colloidal nanosilver with fish pathogens. Hence, the current study investigated the effects of colloidal AgNPs on the in vitro growth of the fish pathogen Saprolegnia sp.. Before the experiments, various important properties of AgNPs were well-characterized. The antifungal activity of AgNPs was then evaluated by determining the minimum inhibitory concentrations (MICs) using two-fold serial dilutions of colloidal nanosilver in a glucose yeast extract agar at 22ºC. The growth of Saprolegnia sp. on the AgNPs agar treatments was compared to that of nanosilver-free agar as controls. The results showed that AgNPs have an inhibitory effect on the in vitro growth of the tested fungi. The MIC of AgNPs for Saprolegnia sp. was calculated at 1800 mg/L, which is equal to 0.18 percent. It seems that AgNPs could be a proper replacement for teratogenic and toxic agents, such as malachite green. In addition, the indirect use of AgNPs could be a useful method for providing new antifungal activity in aquaculture systems

    Does Physical Production of Nanoparticles Reduce Their Ecotoxicity? A Case of Lower Toxicity of AgNPs Produced by Laser Ablation to Zebrafish (Danio rerio)

    Get PDF
    Use of nano-materials has increased in various aspects of human life. However, possible outbreak of nano-materials toxicity in humans and other organisms is one of the future challenges. Different chemical precursors which are used in chemical approaches for production of nano-materials may have secondary and sometimes toxic effects in living organisms. These secondary effects may be reduced in physical approaches due to not use of chemicals. To test this hypothesis, acute toxic effects of two types of silver nanoparticles (AgNPs) which were produced by physical (top-down) and chemical (bottom-up) methods on survival rate of Zebrafish (Danio rerio) were compared. According to the results, AgNPs produced by physical method were 38 times less toxic than ones generated by chemical method and therefore, the hypothesis was approved. The estimated 96 hr LC50 values of AgNPs produced by physical and chemical methods for zebra fish were 0.540 ± 0.032 and 0.014 ± 0.001 mg/L, respectively. According to these values and regarding the rules of European Union, both types of AgNPs are considered as highly toxic chemicals to aquatic organisms. Generally, AgNPs seems to have toxic effects on aquatic organisms regardless of the method used for their production, and so, their accidental or intentional entrance into the aquatic ecosystems should be inhibited

    Nutritional and ameliorative effects of dietary curcumin and its nano-silica and nano-zeolite encapsulated forms on growth, biochemical and fatty acid profile of common carp (Cyprinus carpio)

    Get PDF
    The present study aimed to examine individual nutritional and ameliorative effects of silica nanoparticles (SiO(2)NPs) and natural zeolite nanoparticles (ZeNPs) and their potential role as carriers to alter the bioavailability of curcumin. Common carps (Cyprinus carpio) were fed during 60 days with a control diet, and curcumin, turmeric, SiO(2)NPs, curcumin-loaded SiO(2)NPs, ZeNPs, and curcumin-loaded ZeNPs each at 1, 50, 6.15, 7.15, 39, and 40 g/kg diet, respectively. The highest weight gain (WG) and specific growth rate (SGR) were observed in fish fed with turmeric (P < 0.05). Moreover, dietary curcumin and ZeNPs increased the content of monounsaturated fatty acids (P < 0.05). After exposure to silver nanoparticles (AgNPs), the lowest amount of aspartate aminotransferase (AST) was obtained in fish fed with curcumin (P < 0.05). In addition, alanine aminotransferase (ALT) decreased significantly in the negative control, curcumin, and curcumin-loaded SiO(2)NPs treatments in comparison to the positive control group (P < 0.05). The lowest silver accumulation was observed in the negative control and SiO(2)NPs groups (P < 0.05). This experiment demonstrated that while the nanoencapsulation of curcumin on SiO(2)NPs and ZeNPs did not enhanced the impact of curcumin on the growth and biochemical factors of carps, it can still be considered a potential dietary supplement for enhancing growth and antioxidant indices when added individually to the diet.GRC97-06503-1info:eu-repo/semantics/publishedVersio

    Socioeconomic inequalities in prevalence, awareness, treatment and control of hypertension: evidence from the PERSIAN cohort study

    Get PDF
    Background Elevated blood pressure is associated with cardiovascular disease, stroke and chronic kidney disease. In this study, we examined the socioeconomic inequality and its related factors in prevalence, Awareness, Treatment and Control (ATC) of hypertension (HTN) in Iran. Method The study used data from the recruitment phase of The Prospective Epidemiological Research Studies in IrAN (PERSIAN). A sample of 162,842 adults aged > = 35 years was analyzed. HTN was defined according to the Joint National Committee)JNC-7(. socioeconomic inequality was measured using concentration index (Cn) and curve. Results The mean age of participants was 49.38(SD = +/- 9.14) years and 44.74% of the them were men. The prevalence of HTN in the total population was 22.3%(95% CI: 20.6%; 24.1%), and 18.8%(95% CI: 16.8%; 20.9%) and 25.2%(95% CI: 24.2%; 27.7%) in men and women, respectively. The percentage of awareness treatment and control among individuals with HTN were 77.5%(95% CI: 73.3%; 81.8%), 82.2%(95% CI: 70.2%; 81.6%) and 75.9%(95% CI: 70.2%; 81.6%), respectively. The Cn for prevalence of HTN was -0.084. Two factors, age (58.46%) and wealth (32.40%), contributed most to the socioeconomic inequality in the prevalence of HTN. Conclusion The prevalence of HTN was higher among low-SES individuals, who also showed higher levels of awareness. However, treatment and control of HTN were more concentrated among those who had higher levels of SES, indicating that people at a higher risk of adverse event related to HTN (the low SES individuals) are not benefiting from the advantage of treatment and control of HTN. Such a gap between diagnosis (prevalence) and control (treatment and control) of HTN needs to be addressed by public health policymakers

    Abstracts from the 3rd International Genomic Medicine Conference (3rd IGMC 2015)

    Get PDF

    Effects of Short-Term Exposure to Sublethal Concentrations of Silver Nanoparticles on Histopathology and Electron Microscope Ultrastructure of Zebrafish (Danio Rerio) Gills

    No full text
    Background: The increasing use of nanomaterials and nanoproducts has increased the possibility of contamination of the environment, which may have adverse effects on different organisms. The aim of this study was to evaluate the effects of silver nanoparticles on histopathology and gill ultrastructure of zebrafish (Danio rerio) under laboratory conditions. Methods: Zebrafish were exposed to four concentrations of silver nanoparticles (0.0015, 0.00375, 0.0075, and 0.015 mg/l) for a period of 4 days. Gill ultrastructure and histopathological changes were studied using scanning electron microscope and haematoxylin - eosin staining. Results: Exposure to silver nanoparticles significantly (P < 0.001) increased the diameter of gill filaments and secondary lamellae, while silver nanoparticles significantly reduced the length of the secondary gills in zebrafish. Moreover, other changes such as vacuolization, dilated and clubbed tips, hyperplasia, edema, fusion, swelling of mucocytes, hypertrophy, and necrosis were observed. The effects of silver nanoparticles in zebrafish gills were dose dependent. Conclusion: Based on the adverse effects of AgNPs on zebrafish gills, silver nanoparticle solutions can be hazardous pollutants for the environment

    Corneal ring infiltration in contact lens wearers

    No full text
    To report a case of atypical sterile ring infiltrates during wearing soft silicone hydrogel contact lens due to poor lens care. A 29-year-old woman presented with complaints of pain, redness, and morning discharge. She was wearing soft silicone hydrogel contact lens previously; her current symptoms began 1 week before presentation. On examination, best-corrected visual acuity was 20/40 in that eye. Slit-lamp examination revealed dense, ring-shaped infiltrate involving both the superficial and deep stromal layers with lucid interval to the limbus, edema of the epithelium, epithelial defect, and vascularization of the superior limbus. Cornea-specific in vivo laser confocal microscopy (Heidelberg Retina Tomograph 2 Rostock Cornea Module, HRT 2-RCM, Heidelberg Engineering GmbH, Dossenheim, Germany) revealed Langerhans cells and no sign of Acanthamoeba or fungal features, using lid scraping and anti-inflammatory drops; her vision completely recovered. We reported an atypical case of a sterile corneal ring infiltrate associated with soft contact lens wearing; smear, culture, and confocal microscopy confirmed a sterile inflammatory reaction

    Toxicity of colloidal nano-silver to zebrafish, Danio rerio: ions, nanoparticles, or both?

    No full text
    Increasing production and utilization of silver nanoparticles can lead to their release into aquatic ecosystems and tend to toxic effects on aquatics. It is not yet clearly specified whether observed toxic effect following exposure of aquatic organisms to colloidal nano-silver is caused by silver nanoparticles contained in the colloid, by free silver ions, or by a combination of both. In this study, acute toxicity of "nanosilver colloid" (containing free ionic silver and silver nanoparticles) compared to the toxicity of "silver nanoparticles" separated from colloidal nanosilver (without free Ag+ ions) were investigated in zebra fish, Danio rerio. Acute toxicity tests were planned and performed according to standards of Organization for Economic Cooperation and Development. The results showed that No Observed Effect Concentrations (NOECs), Lowest Observed Effect Concentrations (LOECs), Maximum Acceptable Toxicant Concentrations (MATCs), and Median Lethal Concentrations (LC50s) of "nano-silver colloid" were 250, 240, 248.90, and 300.64 times less than those of "silver nanoparticles", respectively. Therefore, toxicity of colloidal nanosilver is mostly due to the free silver ions (Ag+) rather than silver nanoparticles present in it. In general "nano-silver colloid" and "silver nanoparticles" are respectively classified as "highly toxic" and "toxic” chemicals for aquatics and the release of these substances into the environment should be prevented
    corecore