17,513 research outputs found
Constant net-time headway as key mechanism behind pedestrian flow dynamics
We show that keeping a constant lower limit on the net-time headway is the
key mechanism behind the dynamics of pedestrian streams. There is a large
variety in flow and speed as functions of density for empirical data of
pedestrian streams, obtained from studies in different countries. The net-time
headway however, stays approximately constant over all these different data
sets. By using this fact, we demonstrate how the underlying dynamics of
pedestrian crowds, naturally follows from local interactions. This means that
there is no need to come up with an arbitrary fit function (with arbitrary fit
parameters) as has traditionally been done. Further, by using not only the
average density values, but the variance as well, we show how the recently
reported stop-and-go waves [Helbing et al., Physical Review E, 75, 046109]
emerge when local density variations take values exceeding a certain maximum
global (average) density, which makes pedestrians stop.Comment: 7 pages, 7 figure
KPZ equation in one dimension and line ensembles
For suitably discretized versions of the Kardar-Parisi-Zhang equation in one
space dimension exact scaling functions are available, amongst them the
stationary two-point function. We explain one central piece from the technology
through which such results are obtained, namely the method of line ensembles
with purely entropic repulsion.Comment: Proceedings STATPHYS22, Bangalore, 200
Non-colliding Brownian Motions and the extended tacnode process
We consider non-colliding Brownian motions with two starting points and two
endpoints. The points are chosen so that the two groups of Brownian motions
just touch each other, a situation that is referred to as a tacnode. The
extended kernel for the determinantal point process at the tacnode point is
computed using new methods and given in a different form from that obtained for
a single time in previous work by Delvaux, Kuijlaars and Zhang. The form of the
extended kernel is also different from that obtained for the extended tacnode
kernel in another model by Adler, Ferrari and van Moerbeke. We also obtain the
correlation kernel for a finite number of non-colliding Brownian motions
starting at two points and ending at arbitrary points.Comment: 38 pages. In the revised version a few arguments have been expanded
and many typos correcte
Dynamics of a tagged particle in the asymmetric exclusion process with the step initial condition
The one-dimensional totally asymmetric simple exclusion process (TASEP) is
considered. We study the time evolution property of a tagged particle in TASEP
with the step-type initial condition. Calculated is the multi-time joint
distribution function of its position. Using the relation of the dynamics of
TASEP to the Schur process, we show that the function is represented as the
Fredholm determinant. We also study the scaling limit. The universality of the
largest eigenvalue in the random matrix theory is realized in the limit. When
the hopping rates of all particles are the same, it is found that the joint
distribution function converges to that of the Airy process after the time at
which the particle begins to move. On the other hand, when there are several
particles with small hopping rate in front of a tagged particle, the limiting
process changes at a certain time from the Airy process to the process of the
largest eigenvalue in the Hermitian multi-matrix model with external sources.Comment: 48 pages, 8 figure
On universality of local edge regime for the deformed Gaussian Unitary Ensemble
We consider the deformed Gaussian ensemble in which
is a hermitian matrix (possibly random) and is the Gaussian
unitary random matrix (GUE) independent of . Assuming that the
Normalized Counting Measure of converges weakly (in probability if
random) to a non-random measure with a bounded support and assuming
some conditions on the convergence rate, we prove universality of the local
eigenvalue statistics near the edge of the limiting spectrum of .Comment: 25 pages, 2 figure
Manipulating the torsion of molecules by strong laser pulses
A proof-of-principle experiment is reported, where torsional motion of a
molecule, consisting of a pair of phenyl rings, is induced by strong laser
pulses. A nanosecond laser pulse spatially aligns the carbon-carbon bond axis,
connecting the two phenyl rings, allowing a perpendicularly polarized, intense
femtosecond pulse to initiate torsional motion accompanied by an overall
rotation about the fixed axis. The induced motion is monitored by femtosecond
time-resolved Coulomb explosion imaging. Our theoretical analysis accounts for
and generalizes the experimental findings.Comment: 4 pages, 4 figures, submitted to PRL; Major revision of the
presentation of the material; Correction of ion labels in Fig. 2(a
Eta Carinae -- Physics of the Inner Ejecta
Eta Carinae's inner ejecta are dominated observationally by the bright
Weigelt blobs and their famously rich spectra of nebular emission and
absorption lines. They are dense (n_e ~ 10^7 to 10^8 cm^-3), warm (T_e ~ 6000
to 7000 K) and slow moving (~40 km/s) condensations of mostly neutral (H^0)
gas. Located within 1000 AU of the central star, they contain heavily
CNO-processed material that was ejected from the star about a century ago.
Outside the blobs, the inner ejecta include absorption-line clouds with similar
conditions, plus emission-line gas that has generally lower densities and a
wider range of speeds (reaching a few hundred km/s) compared to the blobs. The
blobs appear to contain a negligible amount of dust and have a nearly dust-free
view of the central source, but our view across the inner ejecta is severely
affected by uncertain amounts of dust having a patchy distribution in the
foreground. Emission lines from the inner ejecta are powered by photoionization
and fluorescent processes. The variable nature of this emission, occurring in a
5.54 yr event cycle, requires specific changes to the incident flux that hold
important clues to the nature of the central object.Comment: This is Chapter 5 in a book entitled: Eta Carinae and the Supernova
Impostors, Kris Davidson and Roberta M. Humphreys, editors Springe
Emission Lines in the Spectrum of the 3He Star 3 Cen A
Emission in the 4d - 4f transitions of MnII (multiplet 13, 6122-6132 Ang), in
the 4f - 6g transitions of PII, and in 6149.5 Ang of HgII has been detected in
the spectrum of the helium weak star 3 Centauri A (B5 III-IVp). Weaker emission
from the same MnII multiplet is also seen in the hot, mild HgMn star 46 Aquila
(B9 III).It is suggested that the emission is of photospheric origin and may be
evidence for the stratification of manganese, phosphorus and mercury in the
photosphere of 3 CenA, and of manganese in 46Aql.Comment: 16 pages, 3 figure
- …