18,256 research outputs found
Large-scale exact diagonalizations reveal low-momentum scales of nuclei
Ab initio methods aim to solve the nuclear many-body problem with controlled
approximations. Virtually exact numerical solutions for realistic interactions
can only be obtained for certain special cases such as few-nucleon systems.
Here we extend the reach of exact diagonalization methods to handle model
spaces with dimension exceeding on a single compute node. This allows
us to perform no-core shell model (NCSM) calculations for 6Li in model spaces
up to and to reveal the 4He+d halo structure of this
nucleus. Still, the use of a finite harmonic-oscillator basis implies
truncations in both infrared (IR) and ultraviolet (UV) length scales. These
truncations impose finite-size corrections on observables computed in this
basis. We perform IR extrapolations of energies and radii computed in the NCSM
and with the coupled-cluster method at several fixed UV cutoffs. It is shown
that this strategy enables information gain also from data that is not fully UV
converged. IR extrapolations improve the accuracy of relevant bound-state
observables for a range of UV cutoffs, thus making them profitable tools. We
relate the momentum scale that governs the exponential IR convergence to the
threshold energy for the first open decay channel. Using large-scale NCSM
calculations we numerically verify this small-momentum scale of finite nuclei.Comment: Minor revisions.Accepted for publication in Physical Review
High-pressure melting curve of hydrogen
The melting curve of hydrogen was computed for pressures up to 200 GPa, using molecular dynamics. The inter- and intramolecular interactions were described by the reactive force field (ReaxFF) model. The model describes the pressure-volume equation of state solid hydrogen in good agreement with experiment up to pressures over 150 GPa, however the corresponding equation of state for liquid deviates considerably from density functional theory calculations. Due to this, the computed melting curve, although shares most of the known features, yields considerably lower melting temperatures compared to extrapolations of the available diamond anvil cell data. This failure of the ReaxFF model, which can reproduce many physical and chemical properties (including chemical reactions in hydrocarbons) of solid hydrogen, hints at an important change in the mechanism of interaction of hydrogen molecules in the liquid state
Structure and kinematics of the molecular spiral arms in M51
Mapping of the CO(1-0) emission from the spiral galaxy was made with the Onsala 20 m antenna. The observations show that the emission is considerably enhanced in spiral arms which appear to originate as intense ridges of emission about 1 kpc from the nucleus. One of the main objectives for the 1986 observations was to study the variations of the tangential velocity component of molecular gas across a spiral arm. The radial velocity was found to have a velocity shift similar to that predicted by the density wave theory. The present (1986) observations of the inner southern spiral arm of M51 show that the tangential velocity component also behaves in a way which conforms with the density wave model. The molecular arms were compared with the H alpha ionized gas arms of Tully (1974) and it was found that the ionized gas appears to have its maximum intensity slightly outside the molecular arm
Absolute frequency measurements of 85Rb nF7/2 Rydberg states using purely optical detection
A three-step laser excitation scheme is used to make absolute frequency
measurements of highly excited nF7/2 Rydberg states in 85Rb for principal
quantum numbers n=33-100. This work demonstrates the first absolute frequency
measurements of rubidium Rydberg levels using a purely optical detection
scheme. The Rydberg states are excited in a heated Rb vapour cell and Doppler
free signals are detected via purely optical means. All of the frequency
measurements are made using a wavemeter which is calibrated against a GPS
disciplined self-referenced optical frequency comb. We find that the measured
levels have a very high frequency stability, and are especially robust to
electric fields. The apparatus has allowed measurements of the states to an
accuracy of 8.0MHz. The new measurements are analysed by extracting the
modified Rydberg-Ritz series parameters.Comment: 12 pages, 5 figures, submitted to New. J. Phy
The Effect of Integrating Travel Time
This contribution demonstrates the potential gain for the quality of results
in a simulation of pedestrians when estimated remaining travel time is
considered as a determining factor for the movement of simulated pedestrians.
This is done twice: once for a force-based model and once for a cellular
automata-based model. The results show that for the (degree of realism of)
simulation results it is more relevant if estimated remaining travel time is
considered or not than which modeling technique is chosen -- here force-based
vs. cellular automata -- which normally is considered to be the most basic
choice of modeling approach.Comment: preprint of Pedestrian and Evacuation 2012 conference (PED2012)
contributio
Dynamics of a tagged particle in the asymmetric exclusion process with the step initial condition
The one-dimensional totally asymmetric simple exclusion process (TASEP) is
considered. We study the time evolution property of a tagged particle in TASEP
with the step-type initial condition. Calculated is the multi-time joint
distribution function of its position. Using the relation of the dynamics of
TASEP to the Schur process, we show that the function is represented as the
Fredholm determinant. We also study the scaling limit. The universality of the
largest eigenvalue in the random matrix theory is realized in the limit. When
the hopping rates of all particles are the same, it is found that the joint
distribution function converges to that of the Airy process after the time at
which the particle begins to move. On the other hand, when there are several
particles with small hopping rate in front of a tagged particle, the limiting
process changes at a certain time from the Airy process to the process of the
largest eigenvalue in the Hermitian multi-matrix model with external sources.Comment: 48 pages, 8 figure
An Optical and X-ray Examination of Two Radio Supernova Remnant Candidates in 30 Doradus
The giant HII region 30 Doradus is known for its violent internal motions and
bright diffuse X-ray emission, suggesting the existence of supernova remnants
(SNRs), but no nonthermal radio emission has been detected. Recently, Lazendic
et al. compared the H-alpha/H-beta and radio/H-alpha ratios and suggested two
small radio sources to be nonthermal and thus SNR candidates; however, no
optical or X-ray counterparts were detected. We have used high-resolution
optical images and high-dispersion spectra to examine the morphological,
spectral, and kinematic properties of these two SNR candidates, and still find
no optical evidence supporting their identification as SNRs. We have also
determined the X-ray luminosities of these SNR candidates, and find them 1-3
orders of magnitude lower than those commonly seen in young SNRs. High
extinction can obscure optical and X-ray signatures of an SNR, but would
prohibit the use of a high radio/H-alpha ratio to identify nonthermal radio
emission. We suggest that the SNR candidate MCRX J053831.8-690620 is associated
with a young star forming region; while the radio emission originates from the
obscured star forming region, the observed optical emission is dominated by the
foreground. We suggest that the SNR candidate MCRX J053838.8-690730 is
associated with a dust/molecular cloud, which obscures some optical emission
but not the radio emission.Comment: 13 pages, 2 figures, accepted for publication in the ApJ, Nov 10,
200
Manipulating the torsion of molecules by strong laser pulses
A proof-of-principle experiment is reported, where torsional motion of a
molecule, consisting of a pair of phenyl rings, is induced by strong laser
pulses. A nanosecond laser pulse spatially aligns the carbon-carbon bond axis,
connecting the two phenyl rings, allowing a perpendicularly polarized, intense
femtosecond pulse to initiate torsional motion accompanied by an overall
rotation about the fixed axis. The induced motion is monitored by femtosecond
time-resolved Coulomb explosion imaging. Our theoretical analysis accounts for
and generalizes the experimental findings.Comment: 4 pages, 4 figures, submitted to PRL; Major revision of the
presentation of the material; Correction of ion labels in Fig. 2(a
MLL/GAS7 fusion in a pediatric case of t(11;17)(q23;p13)-positive precursor B-cell acute lymphoblastic leukemia
AML/GAS7, resulting from t(11;17)(q23;p13), has been reported in one case of treatment-related acute myeloid leukemia (AML). We present a de novo case of t(11;17)-positive pediatric acute lymphoblastic leukemia. Fluorescent in situ hybridization and reverse transcriptase polymerase chain reaction analyses revealed an MLL/GAS7 chimera identical to the one previously described in AML. The molecular genetic features of MLL/GAS7 and the clinical impact of t(11;17) are discussed
- …