20 research outputs found

    Detailed comparison of amyloid PET and CSF biomarkers for identifying early Alzheimer disease

    Get PDF
    Objective:To compare the diagnostic accuracy of CSF biomarkers and amyloid PET for diagnosing early-stage Alzheimer disease (AD).Methods:From the prospective, longitudinal BioFINDER study, we included 122 healthy elderly and 34 patients with mild cognitive impairment who developed AD dementia within 3 years (MCI-AD). -Amyloid (A) deposition in 9 brain regions was examined with [F-18]-flutemetamol PET. CSF was analyzed with INNOTEST and EUROIMMUN ELISAs. The results were replicated in 146 controls and 64 patients with MCI-AD from the Alzheimer's Disease Neuroimaging Initiative study.Results:The best CSF measures for identifying MCI-AD were A42/total tau (t-tau) and A42/hyperphosphorylated tau (p-tau) (area under the curve [AUC] 0.93-0.94). The best PET measures performed similarly (AUC 0.92-0.93; anterior cingulate, posterior cingulate/precuneus, and global neocortical uptake). CSF A42/t-tau and A42/p-tau performed better than CSF A42 and A42/40 (AUC difference 0.03-0.12, p < 0.05). Using nonoptimized cutoffs, CSF A42/t-tau had the highest accuracy of all CSF/PET biomarkers (sensitivity 97%, specificity 83%). The combination of CSF and PET was not better than using either biomarker separately.Conclusions:Amyloid PET and CSF biomarkers can identify early AD with high accuracy. There were no differences between the best CSF and PET measures and no improvement when combining them. Regional PET measures were not better than assessing the global A deposition. The results were replicated in an independent cohort using another CSF assay and PET tracer. The choice between CSF and amyloid PET biomarkers for identifying early AD can be based on availability, costs, and doctor/patient preferences since both have equally high diagnostic accuracy.Classification of evidence:This study provides Class III evidence that amyloid PET and CSF biomarkers identify early-stage AD equally accurately

    PSB33 protein sustains photosystem II in plant chloroplasts under UV-A light

    Get PDF
    Plants can quickly and dynamically respond to spectral and intensity variations of the incident light. These responses include activation of developmental processes, morphological changes, and photosynthetic acclimation that ensure optimal energy conversion and minimal photoinhibition. Plant adaptation and acclimation to environmental changes have been extensively studied, but many details surrounding these processes remain elusive. The photosystem II (PSII)-associated protein PSB33 plays a fundamental role in sustaining PSII as well as in the regulation of the light antenna in fluctuating light. We investigated how PSB33 knock-out Arabidopsis plants perform under different light qualities. psb33 plants displayed a reduction of 88% of total fresh weight compared to wild type plants when cultivated at the boundary of UV-A and blue light. The sensitivity towards UV-A light was associated with a lower abundance of PSII proteins, which reduces psb33 plants\u27 capacity for photosynthesis. The UV-A phenotype was found to be linked to altered phytohormone status and changed thylakoid ultrastructure. Our results collectively show that PSB33 is involved in a UV-A light-mediated mechanism to maintain a functional PSII pool in the chloroplast

    PSB33 protein sustains Photosystem II in plant chloroplasts under UVA light

    Get PDF
    Plants can quickly and dynamically respond to spectral and intensity variations of the incident light. These responses include activation of developmental processes, morphological changes, and photosynthetic acclimation that ensure optimal energy conversion and minimal photoinhibition. Plant adaptation and acclimation to environmental changes have been extensively studied, but many details surrounding these processes remain elusive. The Photosystem II (PSII) associated protein PSB33 plays a fundamental role in sustaining PSII as well as in the regulation of the light antenna in fluctuating lights. We investigated how PSB33 knock-out plants perform under different light qualities. psb33 plants displayed 88% lower fresh weight compared to wild type plants when cultivated in the border of UVA-blue light. The sensitivity towards UVA light was associated with a lower abundance of PSII proteins, which reduces psb33 plants´ capacity for photosynthesis. The UVA phenotype was further found to be linked to altered phytohormone status and changed thylakoid ultrastructure. Our results collectively show that PSB33 is involved in a UVA light-mediated mechanism to maintain a functional PSII pool in the chloroplast

    A bispecific antibody approach for the potential prophylactic treatment of inherited bleeding disorders

    Get PDF
    Inherited bleeding disorders such as Glanzmann thrombasthenia (GT) lack prophylactic treatment options. As a result, serious bleeding episodes are treated acutely with blood product transfusions or frequent, repeated intravenous administration of recombinant activated coagulation factor VII (rFVIIa). Here we describe HMB-001, a bispecific antibody designed to bind and accumulate endogenous FVIIa and deliver it to sites of vascular injury by targeting it to the TREM (triggering receptor expressed on myeloid cells)-like transcript-1 (TLT-1) receptor that is selectively expressed on activated platelets. In healthy nonhuman primates, HMB-001 prolonged the half-life of endogenous FVIIa, resulting in its accumulation. Mouse bleeding studies confirmed antibody-mediated potentiation of FVIIa hemostatic activity by TLT-1 targeting. In ex vivo models of GT, HMB-001 localized FVIIa on activated platelets and potentiated fibrin-dependent platelet aggregation. Taken together, these results indicate that HMB-001 has the potential to offer subcutaneous prophylactic treatment to prevent bleeds in people with GT and other inherited bleeding disorders, with a low-frequency dosing regimen

    Friends With Benefits: Exploring the Phycosphere of the Marine Diatom Skeletonema marinoi

    Get PDF
    Marine diatoms are the dominant phytoplankton in the temperate oceans and coastal regions, contributing to global photosynthesis, biogeochemical cycling of key nutrients and minerals and aquatic food chains. Integral to the success of marine diatoms is a diverse array of bacterial species that closely interact within the diffusive boundary layer, or phycosphere, surrounding the diatom partner. Recently, we isolated seven distinct bacterial species from cultures of Skeletonema marinoi, a chain-forming, centric diatom that dominates the coastal regions of the temperate oceans. Genomes of all seven bacteria were sequenced revealing many unusual characteristics such as the existence of numerous plasmids of widely varying sizes. Here we have investigated the characteristics of the bacterial interactions with S. marinoi, demonstrating that several strains (Arenibacter algicola strain SMS7, Marinobacter salarius strain SMRS, Sphingorhabdus flavimaris strain SMR4y, Sulfitobacter pseudonitzschiae strain SMR1, Yoonia vestfoldensis strain SMR4r and Roseovarius mucosus strain SMR3) stimulate growth of the diatom partner. Testing of many different environmental factors including low iron concentration, high and low temperatures, and chemical signals showed variable effects on this growth enhancement by each bacterial species, with the most significant being light quality in which green and blue but not red light enhanced the stimulatory effect on S. marinoi growth by all bacteria. Several of the bacteria also inhibited growth of one or more of the other bacterial strains to different extents when mixed together. This study highlights the complex interactions between diatoms and their associated bacteria within the phycosphere, and that further studies are needed to resolve the underlying mechanisms for these relationships and how they might influence the global success of marine diatoms

    Redundancy among phospholipase D isoforms in resistance triggered by recognition of the Pseudomonas syringae effector AvrRpm1 in Arabidopsis thaliana

    Get PDF
    Plants possess a highly sophisticated system for defense against microorganisms. So called MAMP (Microbe Associated Molecular Patterns) triggered immunity (MTI) prevents the majority of non-adapted pathogens from causing disease. Adapted plant pathogens use secreted effector proteins to interfere with such signaling. Recognition of microbial effectors or their activity by plant resistance (R)-proteins triggers a second line of defense resulting in effector triggered immunity (ETI). The latter usually comprises the hypersensitive response (HR) which includes programmed cell death at the site of infection. Phospholipase D (PLD) mediated production of phosphatidic acid (PA) has been linked to both MTI and ETI in plants. Inhibition of PLD activity has been shown to attenuate MTI as well as ETI. In this study, we systematically tested single and double knockouts in all 12 genes encoding PLDs in Arabidopsis thaliana for effects on ETI and MTI. No single PLD could be linked to ETI triggered by recognition of effectors secreted by the bacterium Pseudomonas syringae. However, repression of PLD dependent PA production by n-butanol strongly inhibited the HR following P. syringae effector recognition. In addition some pld mutants were more sensitive to n-butanol than wild type. Thus, the effect of mutations of PLDs could become detectable, and the corresponding genes can be proposed to be involved in the HR. Only knockout of PLDδ caused a loss of MTI-induced cell wall based defense against the non-host powdery mildew Erysiphe pisi. This is thus in stark contrast to the involvement of a multitude of PLD isoforms in the HR triggered by AvrRpm1 recognition

    A quick and robust method for quantification of the hypersensitive response in plants

    No full text
    One of the most studied defense reactions of plants against microbial pathogens is the hypersensitive response (HR). The HR is a complex multicellular process that involves programmed cell death at the site of infection. A standard method to quantify plant defense and the HR is to measure the release of cellular electrolytes into water after infiltration with pathogenic bacteria. In this type of experiment, the bacteria are typically delivered into the plant tissue through syringe infiltration. Here we report the development of a vacuum infiltration protocol that allows multiple plant lines to be infiltrated simultaneously and assayed for defense responses. Vacuum infiltration did not induce more wounding response in Arabidopsis leaf tissue than syringe inoculation, whereas throughput and reproducibility were improved. The method was used to study HR-induced electrolyte loss after treatment with the bacterium Pseudomonas syringae pv. tomato DC3000 harboring the effector AvrRpm1, AvrRpt2 or AvrRps4. Specifically, the influence of bacterial titer on AvrRpm1-induced HR was investigated. Not only the amplitude, but also the timing of the maximum rate of the HR reaction was found to be dose-dependent. Finally, using vacuum infiltration, we were able quantify induction of phospholipase D activity after AvrRpm1 recognition in leaves labeled with 33PO4

    Serum but not cerebrospinal fluid levels of insulin-like growth factor-I (IGF-I) and IGF-binding protein-3 (IGFBP-3) are increased in Alzheimer's disease

    No full text
    Background: Although insulin-like growth factor-I (IGF-I) is of importance for the adult function of the central nervous system (CNS), little is known of the significance of IGF-I in cerebrospinal fluid (CSF) in relation to Alzheimer's disease (AD). Methods: A cross-sectional study of 60 consecutive patients under primary evaluation of cognitive impairment and 20 healthy controls. The patients had AD dementia or mild cognitive impairment (MCI) diagnosed with AD dementia upon follow-up (n = 32), stable MCI (SMCI, n = 13), or other dementias (n = 15). IGF-I, IGF-binding protein-3 (IGFBP-3), and insulin were measured in serum and CSF. Results: Serum IGF-I level was increased in AD patients and in patients with other dementias compared to healthy controls (P = 0.01 and P < 0.05, respectively). Serum IGFBP-3 concentration was increased in AD and SMCI patients compared to controls (P = 0.001 and P < 0.05, respectively). CSF levels of IGF-I and IGFBP-3 as well as serum and CSF levels of insulin were similar in all study groups. In the total study population (n = 80), serum levels of IGF-I and IGFBP-3 correlated negatively with CSF beta-amyloid(1-42) (A beta(1-42)) level (r = -0.29, P = 0.01 and r = -0.27, P = 0.02, respectively) and in the AD patients (n = 32), the increased CSF/serum IGF-I ratio correlated positively with the CSF level of phosphorylated tau protein (P-tau; r = 0.42, P = 0.02). Conclusion: Patients with AD as well as other dementias had high levels of IGF-I in serum but not in CSF. In AD patients, the IGF-I system was associated with biomarkers of AD disease status. (C) 2013 Elsevier Ltd. All rights reserved
    corecore