24,226 research outputs found

    Optical Versus Mid-Infrared Spectroscopic Classification of Ultraluminous Infrared Galaxies

    Get PDF
    The origin of huge infrared luminosities of ultraluminous infrared galaxies (ULIGs) is still in question. Recently, Genzel et al. made mid-infrared (MIR) spectroscopy of a large number of ULIGs and found that the major energy source in them is massive stars formed in the recent starburst activity; i.e., \sim 70% -- 80% of the sample are predominantly powered by the starburst. However, it is known that previous optical spectroscopic observations showed that the majority of ULIGs are classified as Seyferts or LINERs (low-ionization nuclear emission-line regions). In order to reconcile this difference, we compare types of emission-line activity for a sample of ULIGs which have been observed in both optical and MIR. We confirm the results of previous studies that the majority of ULIGs classified as LINERs based on the optical emission-line diagnostics turn to be starburst-dominated galaxies based on the MIR ones. Since the MIR spectroscopy can probe more heavily-reddened, inner parts of the ULIGs, it is quite unlikely that the inner parts are powered by the starburst while the outer parts are powered by non-stellar ionization sources. The most probable resolution of this dilemma is that the optical emission-line nebulae with the LINER properties are powered predominantly by shock heating driven by the superwind activity; i.e., a blast wave driven by a collective effect of a large number of supernovae in the central region of galaxy mergers.Comment: 15 pages, 2 tables, and 3 eps figures. The Astrophysical Journal (Part 1), in pres

    Non-adiabatic holonomic quantum computation

    Full text link
    We develop a non-adiabatic generalization of holonomic quantum computation in which high-speed universal quantum gates can be realized by using non-Abelian geometric phases. We show how a set of non-adiabatic holonomic one- and two-qubit gates can be implemented by utilizing optical transitions in a generic three-level Λ\Lambda configuration. Our scheme opens up for universal holonomic quantum computation on qubits characterized by short coherence times.Comment: Some changes, journal reference adde

    The Theory Behind TheoryMine

    Get PDF
    Abstract. We describe the technology behind the TheoryMine novelty gift company, which sells the rights to name novel mathematical theorems. A tower of four computer systems is used to generate recursive theories, then to speculate conjectures in those theories and then to prove these conjectures. All stages of the process are entirely automatic. The process guarantees large numbers of sound, novel theorems of some intrinsic merit.

    KPZ equation in one dimension and line ensembles

    Full text link
    For suitably discretized versions of the Kardar-Parisi-Zhang equation in one space dimension exact scaling functions are available, amongst them the stationary two-point function. We explain one central piece from the technology through which such results are obtained, namely the method of line ensembles with purely entropic repulsion.Comment: Proceedings STATPHYS22, Bangalore, 200

    Resonant ratcheting of a Bose-Einstein condensate

    Full text link
    We study the rectification process of interacting quantum particles in a periodic potential exposed to the action of an external ac driving. The breaking of spatio-temporal symmetries leads to directed motion already in the absence of interactions. A hallmark of quantum ratcheting is the appearance of resonant enhancement of the current (Europhys. Lett. 79 (2007) 10007 and Phys. Rev. A 75 (2007) 063424). Here we study the fate of these resonances within a Gross-Pitaevskii equation which describes a mean field interaction between many particles. We find, that the resonance is i) not destroyed by interactions, ii) shifting its location with increasing interaction strength. We trace the Floquet states of the linear equations into the nonlinear domain, and show that the resonance gives rise to an instability and thus to the appearance of new nonlinear Floquet states, whose transport properties differ strongly as compared to the case of noninteracting particles

    Polynuclear growth model, GOE2^2 and random matrix with deterministic source

    Full text link
    We present a random matrix interpretation of the distribution functions which have appeared in the study of the one-dimensional polynuclear growth (PNG) model with external sources. It is shown that the distribution, GOE2^2, which is defined as the square of the GOE Tracy-Widom distribution, can be obtained as the scaled largest eigenvalue distribution of a special case of a random matrix model with a deterministic source, which have been studied in a different context previously. Compared to the original interpretation of the GOE2^2 as ``the square of GOE'', ours has an advantage that it can also describe the transition from the GUE Tracy-Widom distribution to the GOE2^2. We further demonstrate that our random matrix interpretation can be obtained naturally by noting the similarity of the topology between a certain non-colliding Brownian motion model and the multi-layer PNG model with an external source. This provides us with a multi-matrix model interpretation of the multi-point height distributions of the PNG model with an external source.Comment: 27pages, 4 figure

    Infrared FeII Emission in Narrow-Line Seyfert 1 Galaxies

    Get PDF
    We obtained 0.8-2.4 micron spectra at a resolution of 320 km/s of four narrow-line Seyfert 1 galaxies in order to study the near-infrared properties of these objects. We focus on the analysis of the FeII emission in that region and the kinematics of the low-ionization broad lines. We found that the 1 micron FeII lines (9997 A, 10501 A, 10863 A and 11126 A) are the strongest FeII lines in the observed interval. For the first time, primary cascade lines of FeII arising from the decay of upper levels pumped by Ly-alpha fluorescence are resolved and identified in active galactic nuclei. Excitation mechanisms leading to the emission of the 1 micron FeII features are discussed. A combination of Ly-alpha fluorescence and collisional excitation are found to be the main contributors. The flux ratio between near-IR FeII lines varies from object to object, in contrast to what is observed in the optical region. A good correlation between the 1 micron and optical FeII emission is found. This suggests that the upper z4Fo and z4Do levels from which the bulk of the optical lines descend are mainly populated by the transitions leading to the 1 micron lines. The width and profile shape of FeII 11127, CaII 8642 and OI 8446 are very similar but significantly narrower than Pa-beta, giving strong observational support to the hypothesis that the region where FeII, CaII and OI are produced are co-spatial, interrelated kinematically and most probably located in the outermost portion of the BLR.Comment: Accepted for publication in ApJ - 35 page

    Dog Bites and Gastrointestinal Disorders: Our Everyday Bodies in Teaching Anthropology and Fieldwork Preparation

    Get PDF
    What are the physical experiences of fieldwork really like? This article invites anthropologists engaged in teaching to transform the way research methods are currently taught to include frank and thoughtful conversations on how bodies, in their mundane physicality, are implicated in fieldwork. While the (mindful) body that actively and purposefully engages with the reality under investigation has gained centrality in anthropological discussions about “being there”, the body that things happen to has been ignored or marginalised. We contend that an exploration of the body that falls ill, feels uncomfortable, or simply does not match with an idealised image of the skilled and productive fieldworker (often male and able-bodied) has practical, pedagogical, political, and analytical merits. By recounting some of our own private anecdotes of challenges encountered in fieldwork, we emphasise the centrality of our physical experiences to our ethnographic approach. Discussing the glamourless, bodily aspects of fieldwork is crucial to preparing ourselves and our students for fieldwork, to combating ableism in anthropology, and to downplaying anxiety over narrow standard goals of “good” fieldwork. We also argue that theoretical considerations of the messy and unpleasant physical experiences that fieldwork involves can bring further insight into how research is (un)done

    Dynamical Casimir effect entangles artificial atoms

    Get PDF
    We show that the physics underlying the dynamical Casimir effect may generate multipartite quantum correlations. To achieve it, we propose a circuit quantum electrodynamics (cQED) scenario involving superconducting quantum interference devices (SQUIDs), cavities, and superconducting qubits, also called artificial atoms. Our results predict the generation of highly entangled states for two and three superconducting qubits in different geometric configurations with realistic parameters. This proposal paves the way for a scalable method of multipartite entanglement generation in cavity networks through dynamical Casimir physics.Comment: Improved version and references added. Accepted for publication in Physical Review Letter

    Implementation of the three-qubit phase-flip error correction code with superconducting qubits

    Get PDF
    We investigate the performance of a three qubit error correcting code in the framework of superconducting qubit implementations. Such a code can recover a quantum state perfectly in the case of dephasing errors but only in situations where the dephasing rate is low. Numerical studies in previous work have however shown that the code does increase the fidelity of the encoded state even in the presence of high error probability, during both storage and processing. In this work we give analytical expressions for the fidelity of such a code. We consider two specific schemes for qubit-qubit interaction realizable in superconducting systems; one σzσz\sigma_z\sigma_z-coupling and one cavity mediated coupling. With these realizations in mind, and considering errors during storing as well as processing, we calculate the maximum operation time allowed in order to still benefit from the code. We show that this limit can be reached with current technology.Comment: 10 pages, 8 figure
    corecore