22,239 research outputs found

    Coherent multiple Andreev reflections and current resonances in SNS junctions

    Get PDF
    We study coherent multiple Andreev reflections in quantum SNS junctions of finite length and arbitrary transparency. The presence of superconducting bound states in these junctions gives rise to great enhancement of the subgap current. The effect is most pronounced in low-transparency junctions, Dâ‰Ș1D\ll1, and in the interval of applied voltage Δ/2<eV<Δ\Delta/2<eV<\Delta, where the amplitude of the current structures is proportional to the first power of the junction transparency DD. The resonant current structures consist of steps and oscillations of the two-particle current and also of multiparticle resonance peaks. The positions of the two-particle current structures have pronounced temperature dependence which scales with Δ(T)\Delta(T), while the positions of the multiparticle resonances have weak temperature dependence, being mostly determined by the junction geometry. Despite the large resonant two-particle current, the excess current at large voltage is small and proportional to D2D^2. Pacs: 74.50.+r, 74.80.Fp, 74.20.Fg, 73.23.AdComment: 23 pages, 16 figure

    Readout methods and devices for Josephson-junction-based solid-state qubits

    Full text link
    We discuss the current situation concerning measurement and readout of Josephson-junction based qubits. In particular we focus attention of dispersive low-dissipation techniques involving reflection of radiation from an oscillator circuit coupled to a qubit, allowing single-shot determination of the state of the qubit. In particular we develop a formalism describing a charge qubit read out by measuring its effective (quantum) capacitance. To exemplify, we also give explicit formulas for the readout time.Comment: 20 pages, 7 figures. To be published in J. Phys.: Condensed Matter, 18 (2006) Special issue: Quantum computin

    The information about the state of a charge qubit gained by a weakly coupled quantum point contact

    Full text link
    We analyze the information that one can learn about the state of a quantum two-level system, i.e. a qubit, when probed weakly by a nearby detector. We consider the general case where the qubit Hamiltonian and the qubit's operator probed by the detector do not commute. Because the qubit's state keeps evolving while being probed and the measurement data is mixed with a detector-related background noise, one might expect the detector to fail in this case. We show, however, that under suitable conditions and by proper analysis of the measurement data useful information about the initial state of the qubit can be extracted. Our approach complements the usual master-equation and quantum-trajectory approaches, which describe the evolution of the qubit's quantum state during the measurement process but do not keep track of the acquired measurement information.Comment: 5 pages, 3 figures; Published in the proceedings of the Nobel Symposium 141: Qubits for Future Quantum Informatio

    Dynamical Casimir effect entangles artificial atoms

    Get PDF
    We show that the physics underlying the dynamical Casimir effect may generate multipartite quantum correlations. To achieve it, we propose a circuit quantum electrodynamics (cQED) scenario involving superconducting quantum interference devices (SQUIDs), cavities, and superconducting qubits, also called artificial atoms. Our results predict the generation of highly entangled states for two and three superconducting qubits in different geometric configurations with realistic parameters. This proposal paves the way for a scalable method of multipartite entanglement generation in cavity networks through dynamical Casimir physics.Comment: Improved version and references added. Accepted for publication in Physical Review Letter

    History of the World Allergy Organization

    Get PDF

    Infrared FeII Emission in Narrow-Line Seyfert 1 Galaxies

    Get PDF
    We obtained 0.8-2.4 micron spectra at a resolution of 320 km/s of four narrow-line Seyfert 1 galaxies in order to study the near-infrared properties of these objects. We focus on the analysis of the FeII emission in that region and the kinematics of the low-ionization broad lines. We found that the 1 micron FeII lines (9997 A, 10501 A, 10863 A and 11126 A) are the strongest FeII lines in the observed interval. For the first time, primary cascade lines of FeII arising from the decay of upper levels pumped by Ly-alpha fluorescence are resolved and identified in active galactic nuclei. Excitation mechanisms leading to the emission of the 1 micron FeII features are discussed. A combination of Ly-alpha fluorescence and collisional excitation are found to be the main contributors. The flux ratio between near-IR FeII lines varies from object to object, in contrast to what is observed in the optical region. A good correlation between the 1 micron and optical FeII emission is found. This suggests that the upper z4Fo and z4Do levels from which the bulk of the optical lines descend are mainly populated by the transitions leading to the 1 micron lines. The width and profile shape of FeII 11127, CaII 8642 and OI 8446 are very similar but significantly narrower than Pa-beta, giving strong observational support to the hypothesis that the region where FeII, CaII and OI are produced are co-spatial, interrelated kinematically and most probably located in the outermost portion of the BLR.Comment: Accepted for publication in ApJ - 35 page

    The alpha-gamma transition of Cerium is entropy-driven

    Full text link
    We emphasize, on the basis of experimental data and theoretical calculations, that the entropic stabilization of the gamma-phase is the main driving force of the alpha-gamma transition of cerium in a wide temperature range below the critical point. Using a formulation of the total energy as a functional of the local density and of the f-orbital local Green's functions, we perform dynamical mean-field theory calculations within a new implementation based on the multiple LMTO method, which allows to include semi-core states. Our results are consistent with the experimental energy differences and with the qualitative picture of an entropy-driven transition, while also confirming the appearance of a stabilization energy of the alpha phase as the quasiparticle Kondo resonance develops.Comment: 5 pages, 6 figure

    Implementation of the three-qubit phase-flip error correction code with superconducting qubits

    Get PDF
    We investigate the performance of a three qubit error correcting code in the framework of superconducting qubit implementations. Such a code can recover a quantum state perfectly in the case of dephasing errors but only in situations where the dephasing rate is low. Numerical studies in previous work have however shown that the code does increase the fidelity of the encoded state even in the presence of high error probability, during both storage and processing. In this work we give analytical expressions for the fidelity of such a code. We consider two specific schemes for qubit-qubit interaction realizable in superconducting systems; one σzσz\sigma_z\sigma_z-coupling and one cavity mediated coupling. With these realizations in mind, and considering errors during storing as well as processing, we calculate the maximum operation time allowed in order to still benefit from the code. We show that this limit can be reached with current technology.Comment: 10 pages, 8 figure

    Oscillator Strengths and Damping Constants for Atomic Lines in the J and H Bands

    Full text link
    We have built a line list in the near-infrared J and H bands (1.00-1.34, 1.49-1.80 um) by gathering a series of laboratory and computed line lists. Oscillator strengths and damping constants were computed or obtained by fitting the solar spectrum. The line list presented in this paper is, to our knowledge, the most complete one now available, and supersedes previous lists.Comment: Accepted, Astrophysical Journal Supplement, tentatively scheduled for the Sep. 1999 Vol. 124 #1 issue. Text and tables also available at http://www.iagusp.usp.br/~jorge

    Is the Mott transition relevant to f-electron metals ?

    Full text link
    We study how a finite hybridization between a narrow correlated band and a wide conduction band affects the Mott transition. At zero temperature, the hybridization is found to be a relevant perturbation, so that the Mott transition is suppressed by Kondo screening. In contrast, a first-order transition remains at finite temperature, separating a local moment phase and a Kondo- screened phase. The first-order transition line terminates in two critical endpoints. Implications for experiments on f-electron materials such as the Cerium alloy Ce0.8_{0.8}La0.1_{0.1}Th0.1_{0.1} are discussed.Comment: 5 pages, 3 figure
    • 

    corecore