19,541 research outputs found
Liquid-liquid interfacial tension of electrolyte solutions
It is theoretically shown that the excess liquid-liquid interfacial tension
between two electrolyte solutions as a function of the ionic strength I behaves
asymptotically as O(- I^0.5) for small I and as O(+- I) for large I. The former
regime is dominated by the electrostatic potential due to an unequal
partitioning of ions between the two liquids whereas the latter regime is
related to a finite interfacial thickness. The crossover between the two
asymptotic regimes depends sensitively on material parameters suggesting that,
depending on the actual system under investigation, the experimentally
accessible range of ionic strengths can correspond to either the small or the
large ionic strength regime. In the limiting case of a liquid-gas surface where
ion partitioning is absent, the image chage interaction can dominate the
surface tension for small ionic strength I such that an Onsager-Samaras
limiting law O(- I ln(I)) is expected. The proposed picture is consistent with
more elaborate models and published measurements.Comment: Accepted for publication in Physical Review Letter
Average characteristic polynomials in the two-matrix model
The two-matrix model is defined on pairs of Hermitian matrices of
size by the probability measure where
and are given potential functions and \tau\in\er. We study averages
of products and ratios of characteristic polynomials in the two-matrix model,
where both matrices and may appear in a combined way in both
numerator and denominator. We obtain determinantal expressions for such
averages. The determinants are constructed from several building blocks: the
biorthogonal polynomials and associated to the two-matrix
model; certain transformed functions and \Q_n(v); and finally
Cauchy-type transforms of the four Eynard-Mehta kernels , ,
and . In this way we generalize known results for the
-matrix model. Our results also imply a new proof of the Eynard-Mehta
theorem for correlation functions in the two-matrix model, and they lead to a
generating function for averages of products of traces.Comment: 28 pages, references adde
Survival of Clostridium perfringens During Simulated Transport and Stability of Some Plasmid-borne Toxin Genes under Aerobic Conditions
Clostridium perfringens is a pathogen of great concern in veterinary medicine, because it causes enteric diseases and different types of toxaemias in domesticated animals. It is important that bacteria in tissue samples, which have been collected in the field, survive and for the classification of C. perfringens into the correct toxin group, it is crucial that plasmid-borne genes are not lost during transportation or in the diagnostic laboratory. The objectives of this study were to investigate the survival of C. perfringens in a simulated transport of field samples and to determine the stability of the plasmid-borne toxin genes cpb1 and etx after storage at room temperature and at 4°C. Stability of the plasmid-borne genes cpb1 and etx of C. perfringens CCUG 2035, and cpb2 from C. perfringens CIP 106526, JF 2255 and 6 field isolates in aerobic atmosphere was also studied. Survival of C. perfringens was similar in all experiments. The cpb1 and etx genes were detected in all isolates from samples stored either at room temperature or at 4°C for 24–44 h. Repeated aerobic treatment of C. perfringens CCUG 2035 and CIP 106526 did not result in the loss of the plasmid-borne genes cpb1, cpb2 or etx. Plasmid-borne genes in C. perfringens were found to be more stable than generally reported. Therefore, C. perfringens toxinotyping by PCR can be performed reliably, as the risk of plasmid loss seems to be a minor problem
On the stability of quantum holonomic gates
We provide a unified geometrical description for analyzing the stability of
holonomic quantum gates in the presence of imprecise driving controls
(parametric noise). We consider the situation in which these fluctuations do
not affect the adiabatic evolution but can reduce the logical gate performance.
Using the intrinsic geometric properties of the holonomic gates, we show under
which conditions on noise's correlation time and strength, the fluctuations in
the driving field cancel out. In this way, we provide theoretical support to
previous numerical simulations. We also briefly comment on the error due to the
mismatch between real and nominal time of the period of the driving fields and
show that it can be reduced by suitably increasing the adiabatic time.Comment: 7 page
Oscillator Strengths and Damping Constants for Atomic Lines in the J and H Bands
We have built a line list in the near-infrared J and H bands (1.00-1.34,
1.49-1.80 um) by gathering a series of laboratory and computed line lists.
Oscillator strengths and damping constants were computed or obtained by fitting
the solar spectrum.
The line list presented in this paper is, to our knowledge, the most complete
one now available, and supersedes previous lists.Comment: Accepted, Astrophysical Journal Supplement, tentatively scheduled for
the Sep. 1999 Vol. 124 #1 issue. Text and tables also available at
http://www.iagusp.usp.br/~jorge
Non-colliding Brownian Motions and the extended tacnode process
We consider non-colliding Brownian motions with two starting points and two
endpoints. The points are chosen so that the two groups of Brownian motions
just touch each other, a situation that is referred to as a tacnode. The
extended kernel for the determinantal point process at the tacnode point is
computed using new methods and given in a different form from that obtained for
a single time in previous work by Delvaux, Kuijlaars and Zhang. The form of the
extended kernel is also different from that obtained for the extended tacnode
kernel in another model by Adler, Ferrari and van Moerbeke. We also obtain the
correlation kernel for a finite number of non-colliding Brownian motions
starting at two points and ending at arbitrary points.Comment: 38 pages. In the revised version a few arguments have been expanded
and many typos correcte
Spatial distribution of low-energy plasma around 2 comet 67P/CG from Rosetta measurements
International audienceWe use measurements from the Rosetta plasma consortium (RPC) Langmuir probe (LAP) and mutual impedance probe (MIP) to study the spatial distribution of low-energy plasma in the near-nucleus coma of comet 67P/Churyumov-Gerasimenko. The spatial distribution is highly structured with the highest density in the summer hemisphere and above the region connecting the two main lobes of the comet, i.e. the neck region. There is a clear correlation with the neutral density and the plasma to neutral density ratio is found to be ∼1-2·10 −6 , at a cometocentric distance of 10 km and at 3.1 AU from the sun. A clear 6.2 h modulation of the plasma is seen as the neck is exposed twice per rotation. The electron density of the collisonless plasma within 260 km from the nucleus falls of with radial distance as ∼1/r. The spatial structure indicates that local ionization of neutral gas is the dominant source of low-energy plasma around the comet
Non-adiabatic holonomic quantum computation
We develop a non-adiabatic generalization of holonomic quantum computation in
which high-speed universal quantum gates can be realized by using non-Abelian
geometric phases. We show how a set of non-adiabatic holonomic one- and
two-qubit gates can be implemented by utilizing optical transitions in a
generic three-level configuration. Our scheme opens up for universal
holonomic quantum computation on qubits characterized by short coherence times.Comment: Some changes, journal reference adde
- …