149 research outputs found
Co-localization and regulation of basic fibroblast growth factor and arginine vasopressin in neuroendocrine cells of the rat and human brain
<p>Abstract</p> <p>Background</p> <p>Adult rat hypothalamo-pituitary axis and choroid plexus are rich in basic fibroblast growth factor (FGF2) which likely has a role in fluid homeostasis. Towards this end, we characterized the distribution and modulation of FGF2 in the human and rat central nervous system. To ascertain a functional link between arginine vasopressin (AVP) and FGF2, a rat model of chronic dehydration was used to test the hypothesis that FGF2 expression, like that of AVP, is altered by perturbed fluid balance.</p> <p>Methods</p> <p>Immunohistochemistry and confocal microscopy were used to examine the distribution of FGF2 and AVP neuropeptides in the normal human brain. In order to assess effects of chronic dehydration, Sprague-Dawley rats were water deprived for 3 days. AVP neuropeptide expression and changes in FGF2 distribution in the brain, neural lobe of the pituitary and kidney were assessed by immunohistochemistry, and western blotting (FGF2 isoforms).</p> <p>Results</p> <p>In human hypothalamus, FGF2 and AVP were co-localized in the cytoplasm of supraoptic and paraventricular magnocellular neurons and axonal processes. Immunoreactive FGF2 was associated with small granular structures distributed throughout neuronal cytoplasm. Neurohypophysial FGF2 immunostaining was found in axonal processes, pituicytes and Herring bodies. Following chronic dehydration in rats, there was substantially-enhanced FGF2 staining in basement membranes underlying blood vessels, pituicytes and other glia. This accompanied remodeling of extracellular matrix. Western blot data revealed that dehydration increased expression of the hypothalamic FGF2 isoforms of ca. 18, 23 and 24 kDa. In lateral ventricle choroid plexus of dehydrated rats, FGF2 expression was augmented in the epithelium (Ab773 as immunomarker) but reduced interstitially (Ab106 immunostaining).</p> <p>Conclusions</p> <p>Dehydration altered FGF2 expression patterns in AVP-containing magnocellular neurons and neurohypophysis, as well as in choroid plexus epithelium. This supports the involvement of centrally-synthesized FGF2, putatively coupled to that of AVP, in homeostatic mechanisms that regulate fluid balance.</p
Development of the Synarcual in the Elephant Sharks (Holocephali; Chondrichthyes): Implications for Vertebral Formation and Fusion
The synarcual is a structure incorporating multiple elements of two or more anterior vertebrae of the axial skeleton, forming immediately posterior to the cranium. It has been convergently acquired in the fossil group âPlacodermiâ, in Chondrichthyes (Holocephali, Batoidea), within the teleost group Syngnathiformes, and to varying degrees in a range of mammalian taxa. In addition, cervical vertebral fusion presents as an abnormal pathology in a variety of human disorders. Vertebrae develop from axially arranged somites, so that fusion could result from a failure of somite segmentation early in development, or from later heterotopic development of intervertebral bone or cartilage. Examination of early developmental stages indicates that in the Batoidea and the âPlacodermiâ, individual vertebrae developed normally and only later become incorporated into the synarcual, implying regular somite segmenta- tion and vertebral development. Here we show that in the holocephalan Callorhinchus milii, uniform and regular vertebral segmentation also occurs, with anterior individual vertebra developing separately with subsequent fusion into a synarcual. Vertebral elements forming directly behind the synarcual continue to be incorporated into the synarcual through growth. This appears to be a common pattern through the Vertebrata. Research into human disor- ders, presenting as cervical fusion at birth, focuses on gene misexpression studies in humans and other mammals such as the mouse. However, in chondrichthyans, vertebral fusion represents the normal morphology, moreover, taxa such Leucoraja (Batoidea) and Callorhinchus (Holocephali) are increasingly used as laboratory animals, and the Callor- hinchus genome has been sequenced and is available for study. Our observations on synarcual development in three major groups of early jawed vertebrates indicate that fusion involves heterotopic cartilage and perichondral bone/mineralised cartilage developing outside the regular skeleton. We suggest that chondrichthyans have potential as ideal extant models for identifying the genes involved in these processes, for application to human skeletal heterotopic disorders
Characterization of miRNA processing machinery in the embryonic chick lung
Lung development is a very complex process that relies on the interaction of several signaling pathways that are controlled by precise regulatory mechanisms. Recently, microRNAs (miRNAs), small non-coding regulatory RNAs, have emerged as new players involved in gene expression regulation controlling several biological processes, such as cellular differentiation, apoptosis and organogenesis, in both developmental and disease processes. Failure to correctly express some specific miRNAs or a component of their biosynthetic machinery during embryonic development is disastrous, resulting in severe abnormalities. Several miRNAs have already been identified as modulators of lung development. Regarding the spatial distribution of the processing machinery of miRNAs, only two of its members (dicer1 and argonaute) have been characterized. The present work characterizes the expression pattern of drosha, dgcr8, exportin-5 and dicer1 in early stages of the embryonic chick lung by whole mount in situ hybridization and cross-section analysis. Overall, these genes are co-expressed in dorsal and distal mesenchyme and also in growing epithelial regions. The expression pattern of miRNA processing machinery supports the previously recognized regulatory role of this mechanism in epithelial and mesenchymal morphogenesis.QRE
Molecular dynamics of ribosomal elongation factors G and Tu
Translation on the ribosome is controlled by external factors. During polypeptide lengthening, elongation factors EF-Tu and EF-G consecutively interact with the bacterial ribosome. EF-Tu binds and delivers an aminoacyl-tRNA to the ribosomal A site and EF-G helps translocate the tRNAs between their binding sites after the peptide bond is formed. These processes occur at the expense of GTP. EF-Tu:tRNA and EF-G are of similar shape, share a common binding site, and undergo large conformational changes on interaction with the ribosome. To characterize the internal motion of these two elongation factors, we used 25Â ns long all-atom molecular dynamics simulations. We observed enhanced mobility of EF-G domains III, IV, and V and of tRNA in the EF-Tu:tRNA complex. EF-Tu:GDP complex acquired a configuration different from that found in the crystal structure of EF-Tu with a GTP analogue, showing conformational changes in the switch I and II regions. The calculated electrostatic properties of elongation factors showed no global similarity even though matching electrostatic surface patches were found around the domain I that contacts the ribosome, and in the GDP/GTP binding region
Risk propensity in the foreign direct investment location decision of emerging multinationals
A distinguishing feature of emerging economy multinationals is their apparent tolerance for host country institutional risk. Employing behavioral decision theory and quasi-experimental data, we find that managersâ domestic experience satisfaction increases their relative risk propensity regarding controllable risk (legally protectable loss), but decreases their tendency to accept non-controllable risk (e.g., political instability). In contrast, firmsâ potential slack reduces relative risk propensity regarding controllable risk, yet amplifies the tendency to take non-controllable risk. We suggest that these counterbalancing effects might help explain observation that risk-taking in FDI location decisions is influenced by firm experience and context. The study provides a new understanding of why firms exhibit heterogeneous responses to host country risks, and the varying effects of institutions
Hypnosis Antenatal Training for Childbirth (HATCh): a randomised controlled trial [NCT00282204]
BACKGROUND: Although medical interventions play an important role in preserving lives and maternal comfort they have become increasingly routine in normal childbirth. This may increase the risk of associated complications and a less satisfactory birth experience. Antenatal hypnosis is associated with a reduced need for pharmacological interventions during childbirth. This trial seeks to determine the efficacy or otherwise of antenatal group hypnosis preparation for childbirth in late pregnancy. METHODS/DESIGN: A single centre, randomised controlled trial using a 3 arm parallel group design in the largest tertiary maternity unit in South Australia. Group 1 participants receive antenatal hypnosis training in preparation for childbirth administered by a qualified hypnotherapist with the use of an audio compact disc on hypnosis for re-enforcement; Group 2 consists of antenatal hypnosis training in preparation for childbirth using an audio compact disc on hypnosis administered by a nurse with no training in hypnotherapy; Group 3 participants continue with their usual preparation for childbirth with no additional intervention. Women > 34 and < 39 weeks gestation, planning a vaginal birth, not in active labour, with a singleton, viable fetus of vertex presentation, are eligible to participate. Allocation concealment is achieved using telephone randomisation. Participants assigned to hypnosis groups commence hypnosis training as near as possible to 37 weeks gestation. Treatment allocations are concealed from treating obstetricians, anaesthetists, midwives and those personnel collecting and analysing data. Our sample size of 135 women/group gives the study 80% power to detect a clinically relevant fall of 20% in the number of women requiring pharmacological analgesia â the primary endpoint. We estimate that approximately 5â10% of women will deliver prior to receiving their allocated intervention. We plan to recruit 150 women/group and perform sequential interim analyses when 150 and 300 participants have been recruited. All participant data will be analysed, by a researcher blinded to treatment allocation, according to the "Intention to treat" principle with comprehensive pre-planned cost- benefit and subgroup analyses. DISCUSSION: If effective, hypnosis would be a simple, inexpensive way to improve the childbirth experience, reduce complications associated with pharmacological interventions, yield cost savings in maternity care, and this trial will provide evidence to guide clinical practice
Mammalian microRNA: an important modulator of host-pathogen interactions in human viral infections
MicroRNAs (miRNAs), which are small non-coding RNAs expressed by almost all metazoans, have key roles in the regulation of cell differentiation, organism development and gene expression. Thousands of miRNAs regulating approximately 60ĂŠ% of the total human genome have been identified. They regulate genetic expression either by direct cleavage or by translational repression of the target mRNAs recognized through partial complementary base pairing. The active and functional unit of miRNA is its complex with Argonaute proteins known as the microRNA-induced silencing complex (miRISC). De-regulated miRNA expression in the human cell may contribute to a diverse group of disorders including cancer, cardiovascular dysfunctions, liver damage, immunological dysfunction, metabolic syndromes and pathogenic infections. Current day studies have revealed that miRNAs are indeed a pivotal component of host-pathogen interactions and host immune responses toward microorganisms. miRNA is emerging as a tool for genetic study, therapeutic development and diagnosis for human pathogenic infections caused by viruses, bacteria, parasites and fungi. Many pathogens can exploit the host miRNA system for their own benefit such as surviving inside the host cell, replication, pathogenesis and bypassing some host immune barriers, while some express pathogen-encoded miRNA inside the host contributing to their replication, survival and/or latency. In this review, we discuss the role and significance of miRNA in relation to some pathogenic viruses
- âŠ