26 research outputs found

    In situ Rb-Sr dating by collision cell, multicollection inductively-coupled plasma mass-spectrometry with pre-cell mass-filter, (CC-MC-ICPMS/MS)

    Get PDF
    We document the utility for in situ Rb–Sr dating of a one-of-a-kind tribrid mass spectrometer, ‘Proteus’, coupled to a UV laser ablation system. Proteus combines quadrupole mass-filter, collision cell and sector magnet with a multicollection inductively-coupled plasma mass spectrometer (CC-MC-ICPMS/MS). Compared to commercial, single collector, tribrid inductively-coupled plasma mass spectrometers (CC-ICPMS/MS) Proteus has enhanced ion transmission and offers simultaneous collection of all Sr isotopes using an array of Faraday cups. These features yield improved precision in measured (87)Sr/(86)Sr ratios, for a given mass of Sr analysed, approximately a factor of 25 in comparison to the Thermo Scientific™ iCAP TQ™ operated under similar conditions. Using SF(6) as a reaction gas on Proteus, measurements of Rb-doped NIST SRM (standard reference material) 987 solutions, with Rb/Sr ratios from 0.01–100, yield (87)Sr/(86)Sr that are indistinguishable from un-doped NIST SRM 987, demonstrating quantitative ‘chemical resolution’ of Rb from Sr. We highlight the importance of mass-filtering before the collision cell for laser ablation (87)Sr/(86)Sr analysis, using an in-house feldspar standard and a range of glass reference materials. By transmitting only those ions with mass-to-charge ratios 82–92 u/e into the collision cell, we achieve accurate (87)Sr/(86)Sr measurements without any corrections for atomic or polyatomic isobaric interferences. Without the pre-cell mass-filtering, measured in situ(87)Sr/(86)Sr ratios are inaccurate. Combining in situ measurements of Rb/Sr and radiogenic Sr isotope ratios we obtain mineral isochrons. We utilise a sample from the well-dated Dartmoor granite (285 ± 1 Ma) as a calibrant for our in situ ages and, using the same conditions, produce accurate Rb–Sr isochron ages for samples of the Fish Canyon tuff (28 ± 2 Ma) and Shap granite pluton (397 ± 1 Ma). Analysing the same Dartmoor granite sample using identical laser conditions and number of spot analyses using the Thermo Scientific™ iCAP TQ™ yielded an isochron slope 5× less precise than Proteus. We use an uncertainty model to illustrate the advantage of using Proteus over single collector CC-ICPMS/MS for in situ Rb–Sr dating. The results of this model show that the improvement is most marked for samples that have low Rb/Sr (<10) or are young (<100 Ma). We also report the first example of an in situ, internal Rb–Sr isochron from a single potassium-feldspar grain. Using a sample from the Shap granite, we obtained accurate age and initial (87)Sr/(86)Sr with 95% confidence intervals of ±1.5% and ±0.03% respectively. Such capabilities offer new opportunities in geochronological studies

    Using Orbitrap mass spectrometry to assess the isotopic compositions of individual compounds in mixtures

    Get PDF
    The isotopic compositions of individual chemical species are routinely used by the geochemical, environmental, forensic, anthropological, chemical, and biomedical communities to elucidate the conditions, sources, and reaction pathways of the molecules in question. Mass spectrometric methods of measuring isotopic compositions of individual compounds generally require that analytes be pure to yield precise, accurate results, yet most applications examine materials that are mixtures of multiple components. Various methods of chemical purification, e.g., chromatography, are used to isolate analytes from mixtures prior to mass spectrometric analysis. However, these techniques take time and specialized instrumentation, both of which could potentially be obviated via the use of ultra-high-resolution mass spectrometry. Here we report on the use of Orbitrap™-based Fourier-transform mass spectrometry to perform isotope ratio measurements of single species within mixtures delivered to the mass spectrometer (MS) without prior chromatographic separation. We demonstrate that instrument biases (attributed here to space charge effects) within the Orbitrap mass analyzer can cause the measured ¹³C/¹²C ratio of a molecular ion in the presence of non-analyte-derived ‘contaminating’ species to spuriously decrease relative to the ¹³C/¹²C ratio measured for the same ion in a pure analyte. We observe that the decrease in ¹³C/¹²C is proportional to the relative concentrations of the additional ‘contaminating’ components. We then recommend several strategies by which this effect can be mediated such that accurate isotope ratios can be obtained

    Using Orbitrap mass spectrometry to assess the isotopic compositions of individual compounds in mixtures

    Get PDF
    The isotopic compositions of individual chemical species are routinely used by the geochemical, environmental, forensic, anthropological, chemical, and biomedical communities to elucidate the conditions, sources, and reaction pathways of the molecules in question. Mass spectrometric methods of measuring isotopic compositions of individual compounds generally require that analytes be pure to yield precise, accurate results, yet most applications examine materials that are mixtures of multiple components. Various methods of chemical purification, e.g., chromatography, are used to isolate analytes from mixtures prior to mass spectrometric analysis. However, these techniques take time and specialized instrumentation, both of which could potentially be obviated via the use of ultra-high-resolution mass spectrometry. Here we report on the use of Orbitrap™-based Fourier-transform mass spectrometry to perform isotope ratio measurements of single species within mixtures delivered to the mass spectrometer (MS) without prior chromatographic separation. We demonstrate that instrument biases (attributed here to space charge effects) within the Orbitrap mass analyzer can cause the measured ¹³C/¹²C ratio of a molecular ion in the presence of non-analyte-derived ‘contaminating’ species to spuriously decrease relative to the ¹³C/¹²C ratio measured for the same ion in a pure analyte. We observe that the decrease in ¹³C/¹²C is proportional to the relative concentrations of the additional ‘contaminating’ components. We then recommend several strategies by which this effect can be mediated such that accurate isotope ratios can be obtained

    The MAT-253 Ultra — a novel high-resolution, multi-collector gas source mass spectrometer

    Get PDF
    We present the design, performance and representative applications of the MAT 253 Ultra – the first prototype of a new class of high-resolution gas source isotope ratio mass spectrometers

    Redetermination of the 21Ne relative abundance of the atmosphere, using a high resolution, multi-collector noble gas mass spectrometer (HELIX-MC Plus)

    No full text
    Analyses of noble gas isotopes by high-resolution, multi-collector mass spectrometry have the potential to revolutionise applications in the cosmo-geo-sciences. The HELIX-MC Plus noble gas mass spectrometer installed at the Australian National University (ANU) is uniquely equipped with three high mass resolution collectors, which permits complete separation of 20Ne from doubly charged interfering 40Ar, 1H19F, 1H218O and partial separation of the 21Ne peak from interfering 20Ne1H. Because of the high mass resolving power, 21Ne can be measured, essentially without interference from 20Ne1H. This capability provides an important opportunity to re-evaluate the relative 21Ne abundance in the atmosphere. Our analyses demonstrate that 20Ne1H contributes approximately 2% to previously determined atmospheric 21Ne relative abundance values. We calculate a new atmospheric 21Ne/20Ne ratio of 0.002905 ± 0.000003 relative to an atmospheric 22Ne/20Ne ratio of 0.102; this new value is distinctly lower than the current IUPAC recommended 21Ne/20Ne value of 0.00298 ± 0.00011. There are several significant implications ensuing from the newly determined value. For example, in the Earth sciences, a critical issue relates to cosmogenic 21Ne surface exposure ages, which involve the calculation of 21Ne concentrations from excess 21Ne, relative to the atmospheric 21Ne/20Ne ratio. For young samples, where cosmogenic 21Ne contents are small and the 21Ne/20Ne ratio is close to the atmospheric value, the revised value could increase cosmogenic 21Ne ages significantly
    corecore