8 research outputs found
High-resolution dataset for building energy management systems applications
Modelling and optimization of energy management systems (EMS) require different data types for operation and validation. In this article, a multi-purpose dataset is provided for EMS applications. It includes PV measurement data for the PV generation and prediction algorithms associated with EMS systems. Weather data has also been measured at the same location for the optimization of PV prediction algorithms and other applications such as building model simulations. Moreover, the dataset contains detailed measurements of a seminar room where not only temperatures have been measured, but also user feedback for comfort assessment. All documented measurements have been gathered at the same location in Munich, Germany
Acute kidney injury after in-hospital cardiac arrest in a predominant internal medicine and cardiology patient population: incidence, risk factors, and impact on survival
Introduction: Prognosis of survivors from cardiac arrest is generally poor. Acute kidney injury (AKI) is a common finding in these patients. In general, AKI is well characterized as a marker of adverse outcome. In-hospital cardiac arrest (IHCA) represents a special subset of cardiac arrest scenarios with differential predisposing factors and courses after the event, compared to out-of-hospital resuscitations. Data about AKI in survivors after in-hospital cardiac arrest are scarce. Methods: In this study, we retrospectively analyzed patients after IHCA for incidence and risk factors of AKI and its prognostic impact on mortality. For inclusion in the analysis, patients had to survive at least 48 h after IHCA. Results: A total of 238 IHCA events with successful resuscitation and survival beyond 48 h after the initial event were recorded. Of those, 89.9% were patients of internal medicine, and 10.1% of patients from surgery, neurology or other departments. In 120/238 patients (50.4%), AKI was diagnosed. In 28 patients (23.3%), transient or permanent renal replacement therapy had to be initiated. Male gender, preexisting chronic kidney disease and a non-shockable first ECG rhythm during resuscitation were significantly associated with a higher incidence of AKI in IHCA-survivors. In-hospital mortality in survivors from IHCA without AKI was 29.7%, and 60.8% in patients after IHCA who developed AKI (p < 0.01 between groups). By multivariate analysis, AKI after IHCA persisted as an independent predictor of in-hospital mortality (HR 3.7 (95% CI 2.14–6.33, p ≤ 0.01)). Conclusion: In this cohort of survivors from IHCA, AKI is a frequent finding, with adverse impact on outcome. Therefore, therapeutic strategies to prevent AKI in post-IHCA patients are warranted
Comparison of the Amyloid Load in the Brains of Two Transgenic Alzheimer's Disease Mouse Models Quantified by Florbetaben Positron Emission Tomography
Alzheimer's disease (AD) is characterized by formation of amyloid plaques and neurofibrillary tangles in the brain, which can be mimicked by transgenic mouse models. Here, we report on the characterization of amyloid load in the brains of two transgenic amyloidosis models using positron emission tomography (PET) with florbetaben (FBB), an F-18-labeled amyloid PET tracer routinely used in AD patients. Young, middle-aged, and old homozygous APP/PS1 mice (ARTE10), old hemizygous APPswe/PS1 Delta E9, and old wild-type control mice were subjected to FBB PET using a small animal PET/computed tomography scanner. After PET, brains were excised, and ex vivo autoradiography was performed. Plaque pathology was verified on brain sections with histological methods. Amyloid plaque load increased progressively with age in the cortex and hippocampus of ARTE10 mice, which could be detected with both in vivo FBB PET and ex vivo autoradiography. FBB retention showed significant differences to wild-type controls already at 9 months of age by both in vivo and ex vivo analyses. An excellent correlation between data derived from PET and autoradiography could be obtained (r(Pearson) = 0.947, p < 0.0001). Although amyloid load detected by FBB in the brains of old APPswe/PS1 Delta E9 mice was as low as values obtained with young ARTE10 mice, statistically significant discrimination to wild-type animals was reached (p < 0.01). In comparison to amyloid burden quantified by histological analysis, FBB retention correlated best with total plaque load and number of congophilic plaques in the brains of both mouse models. In conclusion, the homozygous ARTE10 mouse model showed superior properties over APPswe/PS1 Delta E9 mice for FBB small animal amyloid PET imaging. The absolute amount of congophilic dense-cored plaques seems to be the decisive factor for feasibility of amyloidosis models for amyloid PET analysis