38 research outputs found

    IL-10 Receptor Signaling Is Essential for T R 1 Cell Function In Vivo

    Get PDF
    Interleukin-10 (IL-10) is essential to maintain intestinal homeostasis. CD4+ T regulatory type 1 (TR1) cells produce large amounts of this cytokine and being therefore currently examined in clinical trials as T-cell therapy in patients with inflammatory bowel disease (IBD). However, factors and molecular signals sustaining TR1 cell regulatory activity still need to be identified in order to optimize the efficiency and to ensure the safety of these trials. We investigated the role of IL-10 signaling in mature TR1 cells in vivo

    Inflammatory Phenotype of Intrahepatic Sulfatide-Reactive Type II NKT Cells in Humans With Autoimmune Hepatitis

    Get PDF
    Background: Natural Killer T (NKT) cells are CD1d-restricted innate-like T cells that can rapidly release stored cytokines upon recognition of lipid antigens. In mice, type I NKT cells seem to promote liver inflammation, whereas type II NKT cells seem to restrict hepatitis. Here, we aimed at characterizing the role of human type I and type II NKT in patients with autoimmune hepatitis (AIH).Methods: NKT cells were analyzed by flow cytometry in peripheral blood and liver of AIH patients and control groups. α-galactosylceramide-loaded or sulfatide-loaded tetramers were used to detect type I or II NKT cells, respectively. Hepatic CD1d was stained by in situ-hybridization of liver biopsies.Results and Conclusions: Type II NKT cells were more prevalent in human peripheral blood and liver than type I NKT cells. In AIH patients, the frequency of sulfatide-reactive type II NKT cells was significantly increased in peripheral blood (0.11% of peripheral blood leukocytes) and liver (3.78% of intrahepatic leukocytes) compared to healthy individuals (0.05% and 1.82%) and patients with drug-induced liver injury (0.06% and 2.03%; p < 0.05). Intrahepatic type II NKT cells of AIH patients had a different cytokine profile than healthy subjects with an increased frequency of TNFα (77.8% vs. 59.1%, p < 0.05), decreased IFNγ (32.7% vs. 63.0%, p < 0.05) and a complete lack of IL-4 expressing cells (0% vs. 2.1%, p < 0.05). T cells in portal tracts expressed significantly more CD1d-RNA in AIH livers compared to controls. This study supports that in contrast to their assumed protective role in mice, human intrahepatic, sulfatide-reactive type II NKT cells displayed a proinflammatory cytokine profile in patients with AIH. Infiltrating T cells in portal areas of AIH patients overexpressed CD1d and could thereby activate type II NKT cells

    Mediators of liver inflammation and carcinogenesis

    No full text
    For a long time, host cell death during parasitic infection has been considered a reflection of tissue damage, and often associated with disease pathogenesis. However, during their evolution, protozoan and helminth parasites have developed strategies to interfere with cell death so as to spread and survive in the infected host, thereby ascribing a more intriguing role to infection-associated cell death. In this review, we examine the mechanisms used by intracellular and extracellular parasites to respectively inhibit or trigger programmed cell death. We further dissect the role of the prototypical 'eat-me signal' phosphatidylserine (PtdSer) which, by being exposed on the cell surface of damaged host cells as well as on some viable parasites via a process of apoptotic mimicry, leads to their recognition and up-take by the neighboring phagocytes. Although barely dissected so far, the engagement of different PtdSer receptors on macrophages, by shaping the host immune response, affects the overall infection outcome in models of both protozoan and helminth infections. In this scenario, further understanding of the molecular and cellular regulation of the PtdSer exposing cell-macrophage interaction might allow the identification of new therapeutic targets for the management of parasitic infection

    Pregnancy in autoimmune hepatitis: outcome and risk factors

    No full text
    OBJECTIVE: Autoimmune hepatitis (AIH) may influence pregnancy outcome and pregnancy may affect AIH. We aimed at analyzing the disease course in pregnant AIH patients and at identifying disease-related risk factors for adverse pregnancy outcome. PATIENTS AND METHODS: AIH patients with at least one pregnancy were identified at four liver units. The patients' records and the data obtained by detailed questionnaires were analyzed retrospectively. Forty-two pregnancies of 22 AIH patients were included. RESULTS: The rate of adverse pregnancy outcome was 26%; a medical explanation could be elucidated in only 4 of 11 pregnancies with adverse outcome. Of note, the 7 unexplained adverse pregnancy outcomes were highly associated with the presence of antibodies to SLA/LP (odds ratio 51; p < 0.003) and Ro/SSA (odds ratio 27; p < 0.02). Of 35 live births, 30 children developed normally over a mean observation period of nearly 5 yr. Eleven of these had been exposed to azathioprine in utero. The rate of serious maternal complications was 9% and a high rate (52%) of postpartum flares was noted. CONCLUSIONS: The presence of autoantibodies may be a risk factor for adverse pregnancy outcome in AIH patients. Close monitoring of both mother and fetus seems advisable due to a significant rate of maternal and fetal complication

    P38 MAP kinase signaling is required for the conversion of CD4+CD25- T cells into iTreg.

    Get PDF
    CD4+CD25+ regulatory T cells (Treg) are important mediators of immune tolerance. A subset of Treg can be generated in the periphery by TGF-beta dependent conversion of conventional CD4+CD25- T cells into induced Treg (iTreg). In chronic viral infection or malignancy, such induced iTreg, which limit the depletion of aberrant or infected cells, may be of pathogenic relevance. To identify potential targets for therapeutic intervention, we investigated the TGF-beta signaling in Treg. In contrast to conventional CD4+ T cells, Treg exhibited marked activation of the p38 MAP kinase pathway. Inhibition of p38 MAP kinase activity prevented the TGF-beta-dependent conversion of CD4+CD25- T cells into Foxp3+ iTreg in vitro. Of note, the suppressive capacity of nTreg was not affected by inhibiting p38 MAP kinase. Our findings indicate that signaling via p38 MAP kinase seems to be important for the peripheral generation of iTreg; p38 MAP kinase could thus be a therapeutic target to enhance immunity to chronic viral infection or cancer
    corecore