14 research outputs found

    Synthesis, radiolabeling and evaluation of novel amine guanidine derivatives as potential positron emission tomography tracers for the ion channel of the N-methyl-D-aspartate receptor

    No full text
    The N-Methyl-d-Aspartate receptor (NMDAR) is involved in many neurological and psychiatric disorders including Alzheimer's disease and schizophrenia. The aim of this study was to develop a positron emission tomography (PET) ligand to assess the bio-availability of the NMDAR ion channel in vivo. A series of tri-N-substituted diarylguanidines was synthesized and their in vitro binding affinities for the NMDAR ion channel assessed in rat forebrain membrane fractions. Compounds 21, 23 and 26 were radiolabeled with either carbon-11 or fluorine-18 and ex vivo biodistribution and metabolite studies were performed in Wistar rats. Biodistribution studies showed high uptake especially in prefrontal cortex and lowest uptake in cerebellum. Pre-treatment with MK-801, however, did not decrease uptake of the radiolabeled ligands. In addition, all three ligands showed fast metabolism

    Evaluation of the Novel PET Tracer [11C]HACH242 for Imaging the GluN2B NMDA Receptor in Non-Human Primates

    No full text
    PURPOSE: There are currently no positron emission tomography (PET) radiotracers for the GluN2B (NR2B) binding sites of brain N-methyl-D-aspartate (NMDA) receptors. In rats, the GluN2B antagonist Ro25-6981 reduced the binding of N-((5-(4-fluoro-2-[11C]methoxyphenyl)pyridin-3-yl)methyl)cyclopentanamin ([11C]HACH242). This paper reports the evaluation of [11C]HACH242 PET in non-human primates at baseline and following administration of the GluN2B negative allosteric modulator radiprodil. PROCEDURES: Eight 90-min dynamic [11C]HACH242 PET scans were acquired in three male anaesthetised rhesus monkeys, including a retest session of subject 1, at baseline and 10 min after intravenous 10 mg/kg radiprodil. Standardised uptake values (SUV) were calculated for 9 brain regions. Arterial blood samples were taken at six timepoints to characterise pharmacokinetics in blood and plasma. Reliable input functions for kinetic modelling could not be generated due to variability in the whole-blood radioactivity measurements. RESULTS: [11C]HACH242 entered the brain and displayed fairly uniform uptake. The mean (± standard deviation, SD) Tmax was 17 ± 7 min in baseline scans and 24 ± 15 min in radiprodil scans. The rate of radioligand metabolism in plasma (primarily to polar metabolites) was high, with mean parent fractions of 26 ± 10 % at 20 min and 8 ± 5 % at 85 min. Radiprodil increased [11C]HACH242 whole-brain SUV in the last PET frame by 25 %, 1 %, 3 and 17 % for subjects 1, 2, 3 and retest of subject 1, respectively. The mean brain to plasma ratio was 5.4 ± 2.6, and increased by 39 to 110 % in the radiprodil condition, partly due to lower parent plasma radioactivity of -11 to -56 %. CONCLUSIONS: The present results show that [11C]HACH242 has a suitable kinetic profile in the brain and low accumulation of lipophilic radiometabolites. Radiprodil did not consistently change [11C]HACH242 brain uptake. These findings may be explained by variations in cerebral blood flow, a low fraction of specifically bound tracer, or interactions with endogenous NMDA receptor ligands at the binding site. Further experiments of ligand interactions are necessary to facilitate the development of radiotracers for in vivo imaging of the ionotropic NMDA receptor

    Diagnostic Value of Monitoring Human Cytomegalovirus Late pp67 mRNA Expression in Renal-Allograft Recipients by Nucleic Acid Sequence-Based Amplification

    No full text
    The diagnostic value of monitoring human cytomegalovirus (HCMV) late pp67 mRNA expression by nucleic acid sequence-based amplification (NASBA) after renal-allograft transplantation was evaluated. RNAs were isolated from 489 whole-blood specimens of 42 patients for the specific amplification of the late pp67 (UL65) mRNA. NASBA results were compared to results from the pp65 antigenemia assay, virus isolation by cell culture, and serology. The sensitivity value for NASBA proved to be higher than that for the antigenemia assay (50 versus 35%) for the detection of HCMV infection, while the sensitivity values of cell culture and NASBA were comparable (54 and 50%, respectively). NASBA detected the onset of HCMV infection simultaneously with cell culture and the antigenemia assay. Both the antigenemia assay and NASBA are very specific (100%) and highly predictive (100%) for the onset of HCMV infection. Antiviral therapy with ganciclovir resulted in negative results for cell culture, the antigenemia assay, and NASBA. In conclusion, monitoring HCMV pp67 mRNA expression by NASBA is a highly specific method for the detection of HCMV infection in renal-allograft recipients and is more sensitive than the antigenemia assay. Furthermore, NASBA can be used to monitor the progression of HCMV infections and the effect of antiviral therapy on viral activity

    Evaluation of the Novel PET Tracer [C-11]HACH242 for Imaging the GluN2B NMDA Receptor in Non-Human Primates

    No full text
    Purpose: There are currently no positron emission tomography (PET) radiotracers for the GluN2B (NR2B) binding sites of brain N-methyl-d-aspartate (NMDA) receptors. In rats, the GluN2B antagonist Ro25-6981 reduced the binding of N-((5-(4-fluoro-2-[11C]methoxyphenyl)pyridin-3-yl)methyl)cyclopentanamin ([11C]HACH242). This paper reports the evaluation of [11C]HACH242 PET in non-human primates at baseline and following administration of the GluN2B negative allosteric modulator radiprodil. Procedures: Eight 90-min dynamic [11C]HACH242 PET scans were acquired in three male anaesthetised rhesus monkeys, including a retest session of subject 1, at baseline and 10 min after intravenous 10 mg/kg radiprodil. Standardised uptake values (SUV) were calculated for 9 brain regions. Arterial blood samples were taken at six timepoints to characterise pharmacokinetics in blood and plasma. Reliable input functions for kinetic modelling could not be generated due to variability in the whole-blood radioactivity measurements. Results: [11C]HACH242 entered the brain and displayed fairly uniform uptake. The mean (± standard deviation, SD) Tmax was 17 ± 7 min in baseline scans and 24 ± 15 min in radiprodil scans. The rate of radioligand metabolism in plasma (primarily to polar metabolites) was high, with mean parent fractions of 26 ± 10 % at 20 min and 8 ± 5 % at 85 min. Radiprodil increased [11C]HACH242 whole-brain SUV in the last PET frame by 25 %, 1 %, 3 and 17 % for subjects 1, 2, 3 and retest of subject 1, respectively. The mean brain to plasma ratio was 5.4 ± 2.6, and increased by 39 to 110 % in the radiprodil condition, partly due to lower parent plasma radioactivity of −11 to −56 %. Conclusions: The present results show that [11C]HACH242 has a suitable kinetic profile in the brain and low accumulation of lipophilic radiometabolites. Radiprodil did not consistently change [11C]HACH242 brain uptake. These findings may be explained by variations in cerebral blood flow, a low fraction of specifically bound tracer, or interactions with endogenous NMDA receptor ligands at the binding site. Further experiments of ligand interactions are necessary to facilitate the development of radiotracers for in vivo imaging of the ionotropic NMDA receptor

    Binding characterization of N-(2-chloro-5-thiomethylphenyl)-N′-(3-[ 3 H] 3 methoxy phenyl)-N′-methylguanidine ([ 3 H]GMOM), a non-competitive N-methyl-D-aspartate (NMDA) receptor antagonist

    No full text
    Labeled with carbon-11, N-(2-chloro-5-thiomethylphenyl)-N′-(3-methoxyphenyl)-N′-methylguanidine ([ 11 C]GMOM) is currently the only positron emission tomography (PET) tracer that has shown selectivity for the ion-channel site of N-methyl-D-aspartate (NMDA) receptors in human imaging studies. The present study reports on the selectivity profile and in vitro binding properties of GMOM. The compound was screened on a panel of 80 targets, and labeled with tritium ([ 3 H]GMOM). The binding properties of [ 3 H]GMOM were compared to those of the reference ion-channel ligand [ 3 H](+)-dizocilpine maleate ([ 3 H]MK-801), in a set of concentration-response, homologous and heterologous inhibition, and association kinetics assays, performed with repeatedly washed rat forebrain preparations. GMOM was at least 70-fold more selective for NMDA receptors compared to all other targets examined. In homologous inhibition and concentration-response assays, the binding of [ 3 H]GMOM was regulated by NMDA receptor agonists, albeit in a less prominent manner compared to [ 3 H]MK-801. Scatchard transformation of homologous inhibition data produced concave upward curves for [ 3 H]GMOM and [ 3 H]MK-801. The radioligands showed bi-exponential association kinetics in the presence of 100 μmol L −1 l-glutamate/30 μmol L −1 glycine. [ 3 H]GMOM (3 nmol L −1 and 10 nmol L −1 ) was inhibited with dual affinity by (+)-MK-801, (R,S)-ketamine and memantine, in both presence and absence of agonists. [ 3 H]MK-801 (2 nmol L −1 ) was inhibited in a monophasic manner by GMOM under baseline and combined agonist conditions, with an IC 50 value of ~19 nmol L −1 . The non-linear Scatchard plots, biphasic inhibition by open channel blockers, and bi-exponential kinetics of [ 3 H]GMOM indicate a complex mechanism of interaction with the NMDA receptor ionophore. The implications for quantifying the PET signal of [ 11 C]GMOM are discussed
    corecore