2 research outputs found

    Ferroptosis in Cancer Immunotherapy—Implications for Hepatocellular Carcinoma

    No full text
    Ferroptosis is a recently recognized iron-dependent form of non-apoptotic regulated cell death (RCD) characterized by lipid peroxide accumulation to lethal levels. Cancer cells, which show an increased iron dependency to enable rapid growth, seem vulnerable to ferroptosis. There is also increasing evidence that ferroptosis might be immunogenic and therefore could synergize with immunotherapies. Hepatocellular carcinoma (HCC) is the most common primary liver tumor with a low survival rate due to frequent recurrence and limited efficacy of conventional chemotherapies, illustrating the urgent need for novel drug approaches or combinatorial strategies. Immunotherapy is a new treatment approach for advanced HCC patients. In this setting, ferroptosis inducers may have substantial clinical potential. However, there are still many questions to answer before the mystery of ferroptosis is fully unveiled. This review discusses the existing studies and our current understanding regarding the molecular mechanisms of ferroptosis with the goal of enhancing response to immunotherapy of liver cancer. In addition, challenges and opportunities in clinical applications of potential candidates for ferroptosis-driven therapeutic strategies will be summarized. Unraveling the role of ferroptosis in the immune response could benefit the development of promising anti-cancer therapies that overcome drug resistance and prevent tumor metastasis

    Ferroptosis in Cancer Immunotherapy—Implications for Hepatocellular Carcinoma

    No full text
    Ferroptosis is a recently recognized iron-dependent form of non-apoptotic regulated cell death (RCD) characterized by lipid peroxide accumulation to lethal levels. Cancer cells, which show an increased iron dependency to enable rapid growth, seem vulnerable to ferroptosis. There is also increasing evidence that ferroptosis might be immunogenic and therefore could synergize with immunotherapies. Hepatocellular carcinoma (HCC) is the most common primary liver tumor with a low survival rate due to frequent recurrence and limited efficacy of conventional chemotherapies, illustrating the urgent need for novel drug approaches or combinatorial strategies. Immunotherapy is a new treatment approach for advanced HCC patients. In this setting, ferroptosis inducers may have substantial clinical potential. However, there are still many questions to answer before the mystery of ferroptosis is fully unveiled. This review discusses the existing studies and our current understanding regarding the molecular mechanisms of ferroptosis with the goal of enhancing response to immunotherapy of liver cancer. In addition, challenges and opportunities in clinical applications of potential candidates for ferroptosis-driven therapeutic strategies will be summarized. Unraveling the role of ferroptosis in the immune response could benefit the development of promising anti-cancer therapies that overcome drug resistance and prevent tumor metastasis
    corecore