128 research outputs found

    Triggering social interactions:chimpanzees respond to imitation by a humanoid robot and request responses from it

    Get PDF
    Even the most rudimentary social cues may evoke affiliative responses in humans and promote socialcommunication and cohesion. The present work tested whether such cues of an agent may also promotecommunicative interactions in a nonhuman primate species, by examining interaction-promoting behavioursin chimpanzees. Here, chimpanzees were tested during interactions with an interactive humanoid robot, whichshowed simple bodily movements and sent out calls. The results revealed that chimpanzees exhibited twotypes of interaction-promoting behaviours during relaxed or playful contexts. First, the chimpanzees showedprolonged active interest when they were imitated by the robot. Second, the subjects requested ‘social’responses from the robot, i.e. by showing play invitations and offering toys or other objects. This study thusprovides evidence that even rudimentary cues of a robotic agent may promote social interactions inchimpanzees, like in humans. Such simple and frequent social interactions most likely provided a foundationfor sophisticated forms of affiliative communication to emerge

    Life history strategy of western gorillas (Gorilla gorilla gorilla) : an investigation of juvenile and adolescent social development

    Get PDF
    Life history theory seeks to explain how comparative developmental and maturational parameters vary between species and how such differences affect survival and reproductive success. In primates, the immature period is found to be longer than in other relatively sized mammals, delaying sexual maturation but being essential for brain growth and social development. Compared to adulthood, the primate immature period remains understudied, limiting our understanding of how delayed maturation contributes towards species fitness. This thesis investigates social development of western gorillas (Gorilla gorilla gorilla), who have a relatively prolonged period of immaturity, and focuses on the pre-reproductive period from weaning until sexual maturity. Behavioural data were collected from 13 male (3-11 years) and 9 female (3-8 years) non-reproductive individual (NRI) western gorillas, housed in 5 family groups in European zoos. Data from a further 9 male and 7 female NRIs housed in 3 peer groups in sanctuaries were collected for comparison. A combination of continuous focal sampling, as well as scan, all occurrence and ad libitum sampling was used; 1300 hours of data were collected over 180 days. Within the thesis, a quantitative method to categorise gorillas into a life-stage was designed, which demonstrated distinct behavioural disparities between immature life-stages and between the sexes, highlighting the problems of life stage categories that are based only on dtatic age classes. A study of social relationship development followed, finding that spatially, NRIs became increasingly peripheralised from the group core with age. Socially, younger NRIs invested in prominent maternal and conspecific relationships, whereas older NRls did not. Relatedness affected sociality, with full siblings being more interactive than paternal half siblings are. An investigation of alloparenting showed that both male and female NRIs displayed this behaviour, with females continuing infant interactions until adulthood. It was postulated that gorilla alloparental behaviour is driven by the NRI and supports the 'learning to parent' hypothesis. Social play behaviour was also examined and found to be most common between similar-sized peers, with males generally being the preferred play partner. Disparate-sized play partners were more likely to be full siblings than paternal half siblings were. Younger NRIs were found to engage in more predictable play sequences whilst older NRIs engaged in play that was more sporadic. Support for the 'neural' hypothesis of social play was found, with social play having delayed benefits for the individual, although the immediate benefits of play were not dismissed. Finally, family-raised NRI behaviour was compared to peer-raised NRI behaviour. Behavioural trajectories and spatial orientation were comparable between rearing groups. Peer-groups thus enabled the development of species-specific behaviour, although atypical behaviours also developed. In conclusion, the success of novel methods to understand behaviour in the pre-reproductive period and its function in gorilla life history has been demonstrated

    Combining models to generate consensus medium-term projections of hospital admissions, occupancy and deaths relating to COVID-19 in England

    Get PDF
    Mathematical modelling has played an important role in offering informed advice during the COVID-19 pandemic. In England, a cross government and academia collaboration generated medium-term projections (MTPs) of possible epidemic trajectories over the future 4–6 weeks from a collection of epidemiological models. In this article, we outline this collaborative modelling approach and evaluate the accuracy of the combined and individual model projections against the data over the period November 2021–December 2022 when various Omicron subvariants were spreading across England. Using a number of statistical methods, we quantify the predictive performance of the model projections for both the combined and individual MTPs, by evaluating the point and probabilistic accuracy. Our results illustrate that the combined MTPs, produced from an ensemble of heterogeneous epidemiological models, were a closer fit to the data than the individual models during the periods of epidemic growth or decline, with the 90% confidence intervals widest around the epidemic peaks. We also show that the combined MTPs increase the robustness and reduce the biases associated with a single model projection. Learning from our experience of ensemble modelling during the COVID-19 epidemic, our findings highlight the importance of developing cross-institutional multi-model infectious disease hubs for future outbreak control

    The Fourteenth Data Release of the Sloan Digital Sky Survey: First Spectroscopic Data from the extended Baryon Oscillation Spectroscopic Survey and from the second phase of the Apache Point Observatory Galactic Evolution Experiment

    Get PDF
    The fourth generation of the Sloan Digital Sky Survey (SDSS-IV) has been in operation since July 2014. This paper describes the second data release from this phase, and the fourteenth from SDSS overall (making this, Data Release Fourteen or DR14). This release makes public data taken by SDSS-IV in its first two years of operation (July 2014-2016). Like all previous SDSS releases, DR14 is cumulative, including the most recent reductions and calibrations of all data taken by SDSS since the first phase began operations in 2000. New in DR14 is the first public release of data from the extended Baryon Oscillation Spectroscopic Survey (eBOSS); the first data from the second phase of the Apache Point Observatory (APO) Galactic Evolution Experiment (APOGEE-2), including stellar parameter estimates from an innovative data driven machine learning algorithm known as "The Cannon"; and almost twice as many data cubes from the Mapping Nearby Galaxies at APO (MaNGA) survey as were in the previous release (N = 2812 in total). This paper describes the location and format of the publicly available data from SDSS-IV surveys. We provide references to the important technical papers describing how these data have been taken (both targeting and observation details) and processed for scientific use. The SDSS website (www.sdss.org) has been updated for this release, and provides links to data downloads, as well as tutorials and examples of data use. SDSS-IV is planning to continue to collect astronomical data until 2020, and will be followed by SDSS-V.Comment: SDSS-IV collaboration alphabetical author data release paper. DR14 happened on 31st July 2017. 19 pages, 5 figures. Accepted by ApJS on 28th Nov 2017 (this is the "post-print" and "post-proofs" version; minor corrections only from v1, and most of errors found in proofs corrected

    A Novel Mouse Synaptonemal Complex Protein Is Essential for Loading of Central Element Proteins, Recombination, and Fertility

    Get PDF
    The synaptonemal complex (SC) is a proteinaceous, meiosis-specific structure that is highly conserved in evolution. During meiosis, the SC mediates synapsis of homologous chromosomes. It is essential for proper recombination and segregation of homologous chromosomes, and therefore for genome haploidization. Mutations in human SC genes can cause infertility. In order to gain a better understanding of the process of SC assembly in a model system that would be relevant for humans, we are investigating meiosis in mice. Here, we report on a newly identified component of the murine SC, which we named SYCE3. SYCE3 is strongly conserved among mammals and localizes to the central element (CE) of the SC. By generating a Syce3 knockout mouse, we found that SYCE3 is required for fertility in both sexes. Loss of SYCE3 blocks synapsis initiation and results in meiotic arrest. In the absence of SYCE3, initiation of meiotic recombination appears to be normal, but its progression is severely impaired resulting in complete absence of MLH1 foci, which are presumed markers of crossovers in wild-type meiocytes. In the process of SC assembly, SYCE3 is required downstream of transverse filament protein SYCP1, but upstream of the other previously described CE–specific proteins. We conclude that SYCE3 enables chromosome loading of the other CE–specific proteins, which in turn would promote synapsis between homologous chromosomes

    Erratum to: Methods for evaluating medical tests and biomarkers

    Get PDF
    [This corrects the article DOI: 10.1186/s41512-016-0001-y.]

    Children must be protected from the tobacco industry's marketing tactics.

    Get PDF

    Sloan Digital Sky Survey IV: mapping the Milky Way, nearby galaxies, and the distant universe

    Get PDF
    We describe the Sloan Digital Sky Survey IV (SDSS-IV), a project encompassing three major spectroscopic programs. The Apache Point Observatory Galactic Evolution Experiment 2 (APOGEE-2) is observing hundreds of thousands of Milky Way stars at high resolution and high signal-to-noise ratios in the near-infrared. The Mapping Nearby Galaxies at Apache Point Observatory (MaNGA) survey is obtaining spatially resolved spectroscopy for thousands of nearby galaxies (median ). The extended Baryon Oscillation Spectroscopic Survey (eBOSS) is mapping the galaxy, quasar, and neutral gas distributions between and 3.5 to constrain cosmology using baryon acoustic oscillations, redshift space distortions, and the shape of the power spectrum. Within eBOSS, we are conducting two major subprograms: the SPectroscopic IDentification of eROSITA Sources (SPIDERS), investigating X-ray AGNs and galaxies in X-ray clusters, and the Time Domain Spectroscopic Survey (TDSS), obtaining spectra of variable sources. All programs use the 2.5 m Sloan Foundation Telescope at the Apache Point Observatory; observations there began in Summer 2014. APOGEE-2 also operates a second near-infrared spectrograph at the 2.5 m du Pont Telescope at Las Campanas Observatory, with observations beginning in early 2017. Observations at both facilities are scheduled to continue through 2020. In keeping with previous SDSS policy, SDSS-IV provides regularly scheduled public data releases; the first one, Data Release 13, was made available in 2016 July
    corecore